基于极大似然估计框架的噪声和杂乱环境中多目标的同时检测和跟踪

R. Ilin, R. Deming
{"title":"基于极大似然估计框架的噪声和杂乱环境中多目标的同时检测和跟踪","authors":"R. Ilin, R. Deming","doi":"10.1109/OCEANSSYD.2010.5603524","DOIUrl":null,"url":null,"abstract":"We discuss a versatile framework for multiple target detection and tracking based on maximum likelihood estimation with expectation maximization and a cognitive theory called dynamic logic. In this contribution extend the framework to detection of moving objects in video sequences. The paper presents the theory and an example of detection and tracking using a real world video sequence.","PeriodicalId":129808,"journal":{"name":"OCEANS'10 IEEE SYDNEY","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Simultaneous detection and tracking of multiple objects in noisy and cluttered environment using maximum likelihood estimation framework\",\"authors\":\"R. Ilin, R. Deming\",\"doi\":\"10.1109/OCEANSSYD.2010.5603524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a versatile framework for multiple target detection and tracking based on maximum likelihood estimation with expectation maximization and a cognitive theory called dynamic logic. In this contribution extend the framework to detection of moving objects in video sequences. The paper presents the theory and an example of detection and tracking using a real world video sequence.\",\"PeriodicalId\":129808,\"journal\":{\"name\":\"OCEANS'10 IEEE SYDNEY\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'10 IEEE SYDNEY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSSYD.2010.5603524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'10 IEEE SYDNEY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSSYD.2010.5603524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们讨论了一个基于期望最大化的极大似然估计和动态逻辑认知理论的多目标检测和跟踪的通用框架。在此贡献中,将框架扩展到视频序列中运动物体的检测。本文给出了利用真实世界的视频序列进行检测和跟踪的理论和实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous detection and tracking of multiple objects in noisy and cluttered environment using maximum likelihood estimation framework
We discuss a versatile framework for multiple target detection and tracking based on maximum likelihood estimation with expectation maximization and a cognitive theory called dynamic logic. In this contribution extend the framework to detection of moving objects in video sequences. The paper presents the theory and an example of detection and tracking using a real world video sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust discrete Fourier transform based receivers for continuous phase modulation Near-field beamforming for a Multi-Beam Echo Sounder: Approximation and error analysis Long-term real-time monitoring of free-ranging Bottlenose dolphins (Tursiops truncatus) in an aquarium using 5-hydrophone array system Proven high efficiency anchor for harsh cyclonic environments Rugosity, slope and aspect from bathymetric stereo image reconstructions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1