Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé
{"title":"cas - ai:系统文献综述中半自动化初始选择任务的策略","authors":"Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé","doi":"10.1109/SEAA56994.2022.00080","DOIUrl":null,"url":null,"abstract":"Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.","PeriodicalId":269970,"journal":{"name":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCAS-AI: A Strategy to Semi-Automate the Initial Selection Task in Systematic Literature Reviews\",\"authors\":\"Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé\",\"doi\":\"10.1109/SEAA56994.2022.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.\",\"PeriodicalId\":269970,\"journal\":{\"name\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA56994.2022.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA56994.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SCAS-AI: A Strategy to Semi-Automate the Initial Selection Task in Systematic Literature Reviews
Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.