基于优化补偿电容的180nm和130nm两级运算跨导放大器性能评估

Anand Krisshna P, Archana R Nair, P. R. Sreenidhi
{"title":"基于优化补偿电容的180nm和130nm两级运算跨导放大器性能评估","authors":"Anand Krisshna P, Archana R Nair, P. R. Sreenidhi","doi":"10.1109/ETI4.051663.2021.9619398","DOIUrl":null,"url":null,"abstract":"This paper illustrates the performance assessment and design of CMOS Two Stage OTA under 130nm and 180nm technology nodes focusing on optimization in compensation capacitance, reduction in power dissipation. The designed circuit operates at two different supply voltages of 1.2V and 1.8V and the input relay is dependent on bias current. In this paper, the device parameters such as AC-Gain, Phase margin, Slew rate, CMRR, ICMR, Output offset voltage, Gain bandwidth, Noise and Power dissipation are theoretically calculated and analysed using LT spice software for 130nm and 180nm technology for given specifications. As the power is a major design parameter, the bias current and supply voltage is varied within the range of respective technology nodes to achieve a minimum power dissipation design. For minimum power design, reduction in bandwidth and stability of the system are major trade-offs. The designed circuit uses a specific compensation methodology for implementing the compensation called Miller compensation. It is used for improving the bandwidth and slew rate of the designed system for various capacitive loads.","PeriodicalId":129682,"journal":{"name":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Assessment of Two Stage Operational Transconductance Amplifier in 180nm and 130nm Technology with Optimised Compensation Capacitance\",\"authors\":\"Anand Krisshna P, Archana R Nair, P. R. Sreenidhi\",\"doi\":\"10.1109/ETI4.051663.2021.9619398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the performance assessment and design of CMOS Two Stage OTA under 130nm and 180nm technology nodes focusing on optimization in compensation capacitance, reduction in power dissipation. The designed circuit operates at two different supply voltages of 1.2V and 1.8V and the input relay is dependent on bias current. In this paper, the device parameters such as AC-Gain, Phase margin, Slew rate, CMRR, ICMR, Output offset voltage, Gain bandwidth, Noise and Power dissipation are theoretically calculated and analysed using LT spice software for 130nm and 180nm technology for given specifications. As the power is a major design parameter, the bias current and supply voltage is varied within the range of respective technology nodes to achieve a minimum power dissipation design. For minimum power design, reduction in bandwidth and stability of the system are major trade-offs. The designed circuit uses a specific compensation methodology for implementing the compensation called Miller compensation. It is used for improving the bandwidth and slew rate of the designed system for various capacitive loads.\",\"PeriodicalId\":129682,\"journal\":{\"name\":\"2021 Emerging Trends in Industry 4.0 (ETI 4.0)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Emerging Trends in Industry 4.0 (ETI 4.0)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETI4.051663.2021.9619398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETI4.051663.2021.9619398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文阐述了CMOS两级OTA在130nm和180nm技术节点下的性能评估和设计,重点是优化补偿电容,降低功耗。设计的电路工作在1.2V和1.8V两种不同的电源电压下,输入继电器依赖于偏置电流。本文利用LT spice软件对给定规格下130nm和180nm工艺的交流增益、相位裕度、摆率、CMRR、ICMR、输出偏置电压、增益带宽、噪声和功耗等器件参数进行了理论计算和分析。由于功率是主要的设计参数,因此偏置电流和电源电压在各自的技术节点范围内变化,以实现最小的功耗设计。对于最小功耗设计,带宽的减少和系统的稳定性是主要的权衡。所设计的电路采用了一种特殊的补偿方法来实现米勒补偿。它用于提高所设计系统的带宽和摆幅率,以适应各种容性负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Assessment of Two Stage Operational Transconductance Amplifier in 180nm and 130nm Technology with Optimised Compensation Capacitance
This paper illustrates the performance assessment and design of CMOS Two Stage OTA under 130nm and 180nm technology nodes focusing on optimization in compensation capacitance, reduction in power dissipation. The designed circuit operates at two different supply voltages of 1.2V and 1.8V and the input relay is dependent on bias current. In this paper, the device parameters such as AC-Gain, Phase margin, Slew rate, CMRR, ICMR, Output offset voltage, Gain bandwidth, Noise and Power dissipation are theoretically calculated and analysed using LT spice software for 130nm and 180nm technology for given specifications. As the power is a major design parameter, the bias current and supply voltage is varied within the range of respective technology nodes to achieve a minimum power dissipation design. For minimum power design, reduction in bandwidth and stability of the system are major trade-offs. The designed circuit uses a specific compensation methodology for implementing the compensation called Miller compensation. It is used for improving the bandwidth and slew rate of the designed system for various capacitive loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm Real Time Servo Analysis of Non-Linear Conical Tank Level Control using Root Locus Technique Apply Blockchain Technology for Security of IoT Devices A Highly Efficient Intrusion Detection and Packet Tracking Based on Game Theory Approach Logistic Regression Model for Loan Prediction: A Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1