{"title":"用于高性能正则表达式匹配的可伸缩DFA编译","authors":"J. V. Lunteren","doi":"10.1145/2906363.2907053","DOIUrl":null,"url":null,"abstract":"Regular-expression accelerators often rely on sophisticated compilers to fully exploit the available hardware capabilities for achieving wire-speed scan rates of multiple tens of gigabits per second. This paper presents a method for the efficient compilation of pattern-matching functions specified by deterministic finite automata (DFAs) into executable structures targeted at accelerators based on B-FSM programmable state machines. The compilation scheme presented is able to effectively exploit an adaptive compression mechanism to obtain one of the most compact state-transition-table structures in the industry, in combination with fast compilation times. The heuristic-based approach scales to very large DFAs having tens of millions of transitions, while achieving an approximately linear growth of the storage needs as a function of the DFA size.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scalable DFA Compilation for High-Performance Regular-Expression Matching\",\"authors\":\"J. V. Lunteren\",\"doi\":\"10.1145/2906363.2907053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular-expression accelerators often rely on sophisticated compilers to fully exploit the available hardware capabilities for achieving wire-speed scan rates of multiple tens of gigabits per second. This paper presents a method for the efficient compilation of pattern-matching functions specified by deterministic finite automata (DFAs) into executable structures targeted at accelerators based on B-FSM programmable state machines. The compilation scheme presented is able to effectively exploit an adaptive compression mechanism to obtain one of the most compact state-transition-table structures in the industry, in combination with fast compilation times. The heuristic-based approach scales to very large DFAs having tens of millions of transitions, while achieving an approximately linear growth of the storage needs as a function of the DFA size.\",\"PeriodicalId\":375451,\"journal\":{\"name\":\"Software and Compilers for Embedded Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2906363.2907053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2906363.2907053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable DFA Compilation for High-Performance Regular-Expression Matching
Regular-expression accelerators often rely on sophisticated compilers to fully exploit the available hardware capabilities for achieving wire-speed scan rates of multiple tens of gigabits per second. This paper presents a method for the efficient compilation of pattern-matching functions specified by deterministic finite automata (DFAs) into executable structures targeted at accelerators based on B-FSM programmable state machines. The compilation scheme presented is able to effectively exploit an adaptive compression mechanism to obtain one of the most compact state-transition-table structures in the industry, in combination with fast compilation times. The heuristic-based approach scales to very large DFAs having tens of millions of transitions, while achieving an approximately linear growth of the storage needs as a function of the DFA size.