Giorgio Micconi, J. Aleotti, S. Caselli, G. Benassi, N. Zambelli, A. Zappettini
{"title":"用于室外环境中辐射源探测的触觉制导无人机","authors":"Giorgio Micconi, J. Aleotti, S. Caselli, G. Benassi, N. Zambelli, A. Zappettini","doi":"10.1109/RED-UAS.2015.7441016","DOIUrl":null,"url":null,"abstract":"This work proposes a haptic teleoperation system of an unmanned aerial vehicle (UAV) aimed at localizing radiation sources in outdoor environments. Radiation sources are localized and identified by equipping the UAV with a CdZnTe-based custom X-ray detector providing light, compact, and low power operation. The UAV is guided in direct sight by the operator. The system allows exploration of potentially dangerous areas without a close exposure of the human operator. The operator is able to provide motion commands to the UAV while receiving force feedback from a 3DOF haptic interface. Force feedback provides an attractive basin around the location of the most intense detected radiation. Preliminary experiments have been conducted to test the elements of the system.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Haptic guided UAV for detection of radiation sources in outdoor environments\",\"authors\":\"Giorgio Micconi, J. Aleotti, S. Caselli, G. Benassi, N. Zambelli, A. Zappettini\",\"doi\":\"10.1109/RED-UAS.2015.7441016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a haptic teleoperation system of an unmanned aerial vehicle (UAV) aimed at localizing radiation sources in outdoor environments. Radiation sources are localized and identified by equipping the UAV with a CdZnTe-based custom X-ray detector providing light, compact, and low power operation. The UAV is guided in direct sight by the operator. The system allows exploration of potentially dangerous areas without a close exposure of the human operator. The operator is able to provide motion commands to the UAV while receiving force feedback from a 3DOF haptic interface. Force feedback provides an attractive basin around the location of the most intense detected radiation. Preliminary experiments have been conducted to test the elements of the system.\",\"PeriodicalId\":317787,\"journal\":{\"name\":\"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED-UAS.2015.7441016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7441016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Haptic guided UAV for detection of radiation sources in outdoor environments
This work proposes a haptic teleoperation system of an unmanned aerial vehicle (UAV) aimed at localizing radiation sources in outdoor environments. Radiation sources are localized and identified by equipping the UAV with a CdZnTe-based custom X-ray detector providing light, compact, and low power operation. The UAV is guided in direct sight by the operator. The system allows exploration of potentially dangerous areas without a close exposure of the human operator. The operator is able to provide motion commands to the UAV while receiving force feedback from a 3DOF haptic interface. Force feedback provides an attractive basin around the location of the most intense detected radiation. Preliminary experiments have been conducted to test the elements of the system.