W. Chai, Cheng Chen, E. Edwan, Jieying Zhang, O. Loffeld
{"title":"基于自适应卡尔曼滤波和车辆约束的INS/Wi-Fi室内导航","authors":"W. Chai, Cheng Chen, E. Edwan, Jieying Zhang, O. Loffeld","doi":"10.1109/WPNC.2012.6268735","DOIUrl":null,"url":null,"abstract":"Due to the complementary nature of inertial navigation system (INS) and Wi-Fi positioning principles, an INS/Wi-Fi integrated system is expected to form a low-cost and continuous indoor navigation solution with better performance than using the standalone systems. In this paper, we explore the integration of Wi-Fi measurements with data from microelectromechanical systems (MEMS) based inertial measurement unit (IMU) for indoor vehicle navigation. Two enhancements, which employ adaptive Kalman filtering (AKF) and vehicle constraints, for supporting the integrated system are presented. One field experiment has been conducted for estimating the trajectory of a mobile robot vehicle. The numerical results show that the enhanced integrated system provides higher navigation accuracy, compared to using standalone Wi-Fi positioning and conventional INS/Wi-Fi integration.","PeriodicalId":399340,"journal":{"name":"2012 9th Workshop on Positioning, Navigation and Communication","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"INS/Wi-Fi based indoor navigation using adaptive Kalman filtering and vehicle constraints\",\"authors\":\"W. Chai, Cheng Chen, E. Edwan, Jieying Zhang, O. Loffeld\",\"doi\":\"10.1109/WPNC.2012.6268735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the complementary nature of inertial navigation system (INS) and Wi-Fi positioning principles, an INS/Wi-Fi integrated system is expected to form a low-cost and continuous indoor navigation solution with better performance than using the standalone systems. In this paper, we explore the integration of Wi-Fi measurements with data from microelectromechanical systems (MEMS) based inertial measurement unit (IMU) for indoor vehicle navigation. Two enhancements, which employ adaptive Kalman filtering (AKF) and vehicle constraints, for supporting the integrated system are presented. One field experiment has been conducted for estimating the trajectory of a mobile robot vehicle. The numerical results show that the enhanced integrated system provides higher navigation accuracy, compared to using standalone Wi-Fi positioning and conventional INS/Wi-Fi integration.\",\"PeriodicalId\":399340,\"journal\":{\"name\":\"2012 9th Workshop on Positioning, Navigation and Communication\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th Workshop on Positioning, Navigation and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2012.6268735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2012.6268735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INS/Wi-Fi based indoor navigation using adaptive Kalman filtering and vehicle constraints
Due to the complementary nature of inertial navigation system (INS) and Wi-Fi positioning principles, an INS/Wi-Fi integrated system is expected to form a low-cost and continuous indoor navigation solution with better performance than using the standalone systems. In this paper, we explore the integration of Wi-Fi measurements with data from microelectromechanical systems (MEMS) based inertial measurement unit (IMU) for indoor vehicle navigation. Two enhancements, which employ adaptive Kalman filtering (AKF) and vehicle constraints, for supporting the integrated system are presented. One field experiment has been conducted for estimating the trajectory of a mobile robot vehicle. The numerical results show that the enhanced integrated system provides higher navigation accuracy, compared to using standalone Wi-Fi positioning and conventional INS/Wi-Fi integration.