用于在三维地理精确环境中观察轨迹数据的自动化工作流程

D. Walvoord, Andrew C. Blose, B. Brower
{"title":"用于在三维地理精确环境中观察轨迹数据的自动化工作流程","authors":"D. Walvoord, Andrew C. Blose, B. Brower","doi":"10.1109/AIPR.2014.7041895","DOIUrl":null,"url":null,"abstract":"Recent developments in computing capabilities and persistent surveillance systems have enabled advanced analytics and visualization of image data. Using our existing capabilities, this work focuses on developing a unified approach to address the task of visualizing track data in 3-dimensional environments. Our current structure from motion (SfM) workflow is reviewed to highlight our point cloud generation methodology, which offers the option to use available sensor telemetry to improve performance. To this point, an algorithm outline for navigation-guided feature matching and geo-rectification in the absence of ground control points (GCPs) is included in our discussion. We then provide a brief overview of our onboard processing suite, which includes real-time mosaic generation, image stabilization, and feature tracking. Exploitation of geometry refinements, inherent to the SfM workflow, is then discussed in the context of projecting track data into the point cloud environment for advanced visualization. Results using the new Exelis airborne collection system, Corvus Eye, are provided to discuss conclusions and areas for future work.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated workflow for observing track data in 3-dimensional geo-accurate environments\",\"authors\":\"D. Walvoord, Andrew C. Blose, B. Brower\",\"doi\":\"10.1109/AIPR.2014.7041895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in computing capabilities and persistent surveillance systems have enabled advanced analytics and visualization of image data. Using our existing capabilities, this work focuses on developing a unified approach to address the task of visualizing track data in 3-dimensional environments. Our current structure from motion (SfM) workflow is reviewed to highlight our point cloud generation methodology, which offers the option to use available sensor telemetry to improve performance. To this point, an algorithm outline for navigation-guided feature matching and geo-rectification in the absence of ground control points (GCPs) is included in our discussion. We then provide a brief overview of our onboard processing suite, which includes real-time mosaic generation, image stabilization, and feature tracking. Exploitation of geometry refinements, inherent to the SfM workflow, is then discussed in the context of projecting track data into the point cloud environment for advanced visualization. Results using the new Exelis airborne collection system, Corvus Eye, are provided to discuss conclusions and areas for future work.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算能力和持久监视系统的最新发展使图像数据的高级分析和可视化成为可能。利用我们现有的能力,这项工作的重点是开发一种统一的方法来解决在三维环境中可视化轨道数据的任务。回顾了我们目前的运动结构(SfM)工作流程,以突出我们的点云生成方法,该方法提供了使用可用传感器遥测来提高性能的选项。在这一点上,我们讨论了在没有地面控制点(gcp)的情况下导航制导特征匹配和地理校正的算法大纲。然后,我们提供了我们的板载处理套件的简要概述,其中包括实时马赛克生成,图像稳定和特征跟踪。然后,在将轨道数据投影到点云环境中以实现高级可视化的背景下,讨论了SfM工作流固有的几何改进的利用。利用新的Exelis机载采集系统Corvus Eye的结果,讨论了结论和未来工作的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automated workflow for observing track data in 3-dimensional geo-accurate environments
Recent developments in computing capabilities and persistent surveillance systems have enabled advanced analytics and visualization of image data. Using our existing capabilities, this work focuses on developing a unified approach to address the task of visualizing track data in 3-dimensional environments. Our current structure from motion (SfM) workflow is reviewed to highlight our point cloud generation methodology, which offers the option to use available sensor telemetry to improve performance. To this point, an algorithm outline for navigation-guided feature matching and geo-rectification in the absence of ground control points (GCPs) is included in our discussion. We then provide a brief overview of our onboard processing suite, which includes real-time mosaic generation, image stabilization, and feature tracking. Exploitation of geometry refinements, inherent to the SfM workflow, is then discussed in the context of projecting track data into the point cloud environment for advanced visualization. Results using the new Exelis airborne collection system, Corvus Eye, are provided to discuss conclusions and areas for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1