基于混合搜索的复杂agent和环境下不确定运动规划(扩展摘要)

Daniel Strawser, B. Williams
{"title":"基于混合搜索的复杂agent和环境下不确定运动规划(扩展摘要)","authors":"Daniel Strawser, B. Williams","doi":"10.24963/ijcai.2023/792","DOIUrl":null,"url":null,"abstract":"As autonomous systems tackle more real-world situations, mission success oftentimes cannot be guaranteed and the planner must reason about the probability of failure. Unfortunately, computing a trajectory that satisfies mission goals while constraining the probability of failure is difficult because of the need to reason about complex, multidimensional probability distributions. Recent methods have seen success using chance-constrained, model-based planning. We argue there are two main drawbacks to these approaches. First, current methods suffer from an inability to deal with expressive environment models such as 3D non-convex obstacles. Second, most planners rely on considerable simplifications when computing trajectory risk including approximating the agent's dynamics, geometry, and uncertainty. We apply hybrid search to the risk-bound, goal-directed planning problem. The hybrid search consists of a region planner and a trajectory planner. The region planner makes discrete choices by reasoning about geometric regions that the agent should visit in order to accomplish its mission. In formulating the region planner, we propose landmark regions that help produce obstacle-free paths. The region planner passes paths through the environment to a trajectory planner; the task of the trajectory planner is to optimize trajectories that respect the agent's dynamics and the user's desired risk of mission failure. We discuss three approaches to modeling trajectory risk: a CDF-based approach, a sampling-based collocation method, and an algorithm named Shooting Method Monte Carlo. A variety of 2D and 3D test cases are presented in the full paper including a linear case, a Dubins car model, and an underwater autonomous vehicle. The method is shown to outperform other methods in terms of speed and utility of the solution. Additionally, the models of trajectory risk are shown to better approximate risk in simulation.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Planning Under Uncertainty with Complex Agents and Environments via Hybrid Search (Extended Abstract)\",\"authors\":\"Daniel Strawser, B. Williams\",\"doi\":\"10.24963/ijcai.2023/792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As autonomous systems tackle more real-world situations, mission success oftentimes cannot be guaranteed and the planner must reason about the probability of failure. Unfortunately, computing a trajectory that satisfies mission goals while constraining the probability of failure is difficult because of the need to reason about complex, multidimensional probability distributions. Recent methods have seen success using chance-constrained, model-based planning. We argue there are two main drawbacks to these approaches. First, current methods suffer from an inability to deal with expressive environment models such as 3D non-convex obstacles. Second, most planners rely on considerable simplifications when computing trajectory risk including approximating the agent's dynamics, geometry, and uncertainty. We apply hybrid search to the risk-bound, goal-directed planning problem. The hybrid search consists of a region planner and a trajectory planner. The region planner makes discrete choices by reasoning about geometric regions that the agent should visit in order to accomplish its mission. In formulating the region planner, we propose landmark regions that help produce obstacle-free paths. The region planner passes paths through the environment to a trajectory planner; the task of the trajectory planner is to optimize trajectories that respect the agent's dynamics and the user's desired risk of mission failure. We discuss three approaches to modeling trajectory risk: a CDF-based approach, a sampling-based collocation method, and an algorithm named Shooting Method Monte Carlo. A variety of 2D and 3D test cases are presented in the full paper including a linear case, a Dubins car model, and an underwater autonomous vehicle. The method is shown to outperform other methods in terms of speed and utility of the solution. Additionally, the models of trajectory risk are shown to better approximate risk in simulation.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着自主系统处理更多的现实情况,任务的成功往往不能保证,计划者必须考虑失败的可能性。不幸的是,由于需要对复杂的多维概率分布进行推理,在限制失败概率的同时计算满足任务目标的轨迹是困难的。最近的方法已经成功地使用了机会约束、基于模型的计划。我们认为这些方法有两个主要缺点。首先,当前的方法无法处理具有表现力的环境模型,如3D非凸障碍物。其次,大多数计划者在计算轨迹风险时依赖于相当大的简化,包括逼近agent的动力学、几何和不确定性。我们将混合搜索应用于风险约束、目标导向的规划问题。混合搜索由区域规划器和轨迹规划器组成。区域规划器通过推理智能体为完成任务需要访问的几何区域来做出离散选择。在制定区域规划时,我们提出了有助于产生无障碍路径的地标区域。区域规划器通过环境将路径传递给轨迹规划器;轨迹规划器的任务是在尊重智能体动力学和用户期望的任务失败风险的情况下优化轨迹。我们讨论了三种建模轨迹风险的方法:基于cdf的方法、基于采样的配置方法和射击法蒙特卡罗算法。全文中介绍了各种2D和3D测试案例,包括线性案例,杜宾汽车模型和水下自主车辆。该方法在解决方案的速度和效用方面优于其他方法。仿真结果表明,轨迹风险模型能较好地逼近风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion Planning Under Uncertainty with Complex Agents and Environments via Hybrid Search (Extended Abstract)
As autonomous systems tackle more real-world situations, mission success oftentimes cannot be guaranteed and the planner must reason about the probability of failure. Unfortunately, computing a trajectory that satisfies mission goals while constraining the probability of failure is difficult because of the need to reason about complex, multidimensional probability distributions. Recent methods have seen success using chance-constrained, model-based planning. We argue there are two main drawbacks to these approaches. First, current methods suffer from an inability to deal with expressive environment models such as 3D non-convex obstacles. Second, most planners rely on considerable simplifications when computing trajectory risk including approximating the agent's dynamics, geometry, and uncertainty. We apply hybrid search to the risk-bound, goal-directed planning problem. The hybrid search consists of a region planner and a trajectory planner. The region planner makes discrete choices by reasoning about geometric regions that the agent should visit in order to accomplish its mission. In formulating the region planner, we propose landmark regions that help produce obstacle-free paths. The region planner passes paths through the environment to a trajectory planner; the task of the trajectory planner is to optimize trajectories that respect the agent's dynamics and the user's desired risk of mission failure. We discuss three approaches to modeling trajectory risk: a CDF-based approach, a sampling-based collocation method, and an algorithm named Shooting Method Monte Carlo. A variety of 2D and 3D test cases are presented in the full paper including a linear case, a Dubins car model, and an underwater autonomous vehicle. The method is shown to outperform other methods in terms of speed and utility of the solution. Additionally, the models of trajectory risk are shown to better approximate risk in simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1