磁性无线舌头-计算机接口

Xueliang Huo, Jia Wang, Maysam Ghovanloo
{"title":"磁性无线舌头-计算机接口","authors":"Xueliang Huo, Jia Wang, Maysam Ghovanloo","doi":"10.1109/CNE.2007.369676","DOIUrl":null,"url":null,"abstract":"We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called \"Tongue Drive\", to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue using a tongue clip, tissue adhesive, or tongue piercing is utilized as a marker to track tongue movements. The magnetic field variations due to the marker movements are detected by an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. The sensor outputs are then processed and translated into different user control commands after being wirelessly transmitted to a portable computer (PC or PDA). These commands can be used to access a computer by substituting the mouse or keyboard functions. They can also be customized to operate a powered wheelchair, a phone, or other equipments. For human trials, we have developed a prototype system with 6 direct commands on a baseball helmet and successfully tested it. The Tongue Drive system response time for >95% correctly completed commands is about 1.5 s.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Magnetic Wireless Tongue-Computer Interface\",\"authors\":\"Xueliang Huo, Jia Wang, Maysam Ghovanloo\",\"doi\":\"10.1109/CNE.2007.369676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called \\\"Tongue Drive\\\", to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue using a tongue clip, tissue adhesive, or tongue piercing is utilized as a marker to track tongue movements. The magnetic field variations due to the marker movements are detected by an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. The sensor outputs are then processed and translated into different user control commands after being wirelessly transmitted to a portable computer (PC or PDA). These commands can be used to access a computer by substituting the mouse or keyboard functions. They can also be customized to operate a powered wheelchair, a phone, or other equipments. For human trials, we have developed a prototype system with 6 direct commands on a baseball helmet and successfully tested it. The Tongue Drive system response time for >95% correctly completed commands is about 1.5 s.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们开发了一种无创、不显眼的磁性无线舌头-计算机接口,称为“舌头驱动”,为严重残疾人士提供灵活有效的计算机访问和环境控制。在舌头上固定一个小的永久磁铁,使用舌夹,组织胶,或舌穿孔作为跟踪舌头运动的标记。由标记移动引起的磁场变化由安装在口腔外的耳机或口腔内的正畸支架上的磁传感器阵列检测。然后,传感器输出经过处理,并在无线传输到便携式计算机(PC或PDA)后转换为不同的用户控制命令。这些命令可以用来代替鼠标或键盘功能来访问计算机。它们也可以被定制来操作电动轮椅、电话或其他设备。对于人体试验,我们已经开发了一个原型系统,在棒球头盔上有6个直接命令,并成功测试了它。对于>95%正确完成的命令,Tongue Drive系统的响应时间约为1.5 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Magnetic Wireless Tongue-Computer Interface
We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called "Tongue Drive", to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue using a tongue clip, tissue adhesive, or tongue piercing is utilized as a marker to track tongue movements. The magnetic field variations due to the marker movements are detected by an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. The sensor outputs are then processed and translated into different user control commands after being wirelessly transmitted to a portable computer (PC or PDA). These commands can be used to access a computer by substituting the mouse or keyboard functions. They can also be customized to operate a powered wheelchair, a phone, or other equipments. For human trials, we have developed a prototype system with 6 direct commands on a baseball helmet and successfully tested it. The Tongue Drive system response time for >95% correctly completed commands is about 1.5 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1