S. Bouzebda, I. Elhattab, Y. Slaoui, Nourelhouda Taachouche
{"title":"截尾数据下矩生成函数的非参数递归核型估计","authors":"S. Bouzebda, I. Elhattab, Y. Slaoui, Nourelhouda Taachouche","doi":"10.19139/soic-2310-5070-1678","DOIUrl":null,"url":null,"abstract":"\n \n \nWe are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study. \n \n \n","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data\",\"authors\":\"S. Bouzebda, I. Elhattab, Y. Slaoui, Nourelhouda Taachouche\",\"doi\":\"10.19139/soic-2310-5070-1678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nWe are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study. \\n \\n \\n\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data
We are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study.