受生物启发的可见光和红外相机技术的发展

E. Williams, M. Pusateri, J. Scott
{"title":"受生物启发的可见光和红外相机技术的发展","authors":"E. Williams, M. Pusateri, J. Scott","doi":"10.1109/AIPR.2009.5466298","DOIUrl":null,"url":null,"abstract":"Visible band and Infrared (IR) band camera and vision system development has been inspired by the human and animal vision systems. This paper will discuss the development of the Electro-Optical/Infrared (EO/IR) spectrum cameras from the front end optics, the detector or photon to electron convertor, preprocessing such as non-uniformity correction, automatic gain control, foveal vision processing done by the human eye, the gimbal system (human or animal eye ball and head motion), and the analog and digital paths of the data (optic nerve in humans). The computer vision algorithms (human or animal brain vision processing) will not be discussed in this paper. The Integrated Design Services in the College of Engineering at Penn State University has been developing EO/IR camera and sensor based computer vision systems for several years and combined with more than twenty years of developing imaging sensor stabilized platforms will use this imaging system development expertise to describe how the human and animal vision systems inspired the design and development of the computer based vision system. This paper will illustrate a block diagram of both the human eye and a typical EO/IR camera while comparing the two imaging systems.","PeriodicalId":266025,"journal":{"name":"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biologically-inspired visible and infrared camera technology development\",\"authors\":\"E. Williams, M. Pusateri, J. Scott\",\"doi\":\"10.1109/AIPR.2009.5466298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible band and Infrared (IR) band camera and vision system development has been inspired by the human and animal vision systems. This paper will discuss the development of the Electro-Optical/Infrared (EO/IR) spectrum cameras from the front end optics, the detector or photon to electron convertor, preprocessing such as non-uniformity correction, automatic gain control, foveal vision processing done by the human eye, the gimbal system (human or animal eye ball and head motion), and the analog and digital paths of the data (optic nerve in humans). The computer vision algorithms (human or animal brain vision processing) will not be discussed in this paper. The Integrated Design Services in the College of Engineering at Penn State University has been developing EO/IR camera and sensor based computer vision systems for several years and combined with more than twenty years of developing imaging sensor stabilized platforms will use this imaging system development expertise to describe how the human and animal vision systems inspired the design and development of the computer based vision system. This paper will illustrate a block diagram of both the human eye and a typical EO/IR camera while comparing the two imaging systems.\",\"PeriodicalId\":266025,\"journal\":{\"name\":\"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2009.5466298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2009.5466298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可见波段和红外(IR)波段相机和视觉系统的发展受到了人类和动物视觉系统的启发。本文将讨论光电/红外(EO/IR)光谱相机的发展,从前端光学,探测器或光子到电子转换器,预处理如非均匀性校正,自动增益控制,人眼的中央凹视觉处理,框架系统(人类或动物的眼球和头部运动),以及数据的模拟和数字路径(人类视神经)。计算机视觉算法(人类或动物的大脑视觉处理)将不会在本文中讨论。宾夕法尼亚州立大学工程学院的综合设计服务部门多年来一直在开发基于EO/IR相机和传感器的计算机视觉系统,并结合20多年来开发成像传感器稳定平台的经验,将利用这种成像系统开发专业知识来描述人类和动物视觉系统如何启发了基于计算机的视觉系统的设计和开发。本文将说明一个框图的人的眼睛和一个典型的EO/IR相机,同时比较两种成像系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biologically-inspired visible and infrared camera technology development
Visible band and Infrared (IR) band camera and vision system development has been inspired by the human and animal vision systems. This paper will discuss the development of the Electro-Optical/Infrared (EO/IR) spectrum cameras from the front end optics, the detector or photon to electron convertor, preprocessing such as non-uniformity correction, automatic gain control, foveal vision processing done by the human eye, the gimbal system (human or animal eye ball and head motion), and the analog and digital paths of the data (optic nerve in humans). The computer vision algorithms (human or animal brain vision processing) will not be discussed in this paper. The Integrated Design Services in the College of Engineering at Penn State University has been developing EO/IR camera and sensor based computer vision systems for several years and combined with more than twenty years of developing imaging sensor stabilized platforms will use this imaging system development expertise to describe how the human and animal vision systems inspired the design and development of the computer based vision system. This paper will illustrate a block diagram of both the human eye and a typical EO/IR camera while comparing the two imaging systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-based querying of urban photos and videos Large-scale functional models of visual cortex for remote sensing Overhead imagery research data set — an annotated data library & tools to aid in the development of computer vision algorithms 3D shape retrieval by visual parts similarity Kalman filter based video background estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1