离散状态监督译码的学习混合系统模型及其在顶叶达区的应用

N. Hudson, J. Burdick
{"title":"离散状态监督译码的学习混合系统模型及其在顶叶达区的应用","authors":"N. Hudson, J. Burdick","doi":"10.1109/CNE.2007.369741","DOIUrl":null,"url":null,"abstract":"Based on Gibbs sampling, a novel method to identify mathematical models of neural activity in response to temporal changes of behavioral or cognitive state is presented. This work is motivated by the developing field of neural prosthetics, where a supervisory controller is required to classify activity of a brain region into suitable discrete modes. Here, neural activity in each discrete mode is modeled with nonstationary point processes, and transitions between modes are modeled as hidden Markov models. The effectiveness of this framework is first demonstrated on a simulated example. The identification algorithm is then applied to extracellular neural activity recorded from multi-electrode arrays in the parietal reach region of a rhesus monkey, and the results demonstrate the ability to decode discrete changes even from small data sets","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning Hybrid System Models for Supervisory Decoding of Discrete State, with applications to the Parietal Reach Region\",\"authors\":\"N. Hudson, J. Burdick\",\"doi\":\"10.1109/CNE.2007.369741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Gibbs sampling, a novel method to identify mathematical models of neural activity in response to temporal changes of behavioral or cognitive state is presented. This work is motivated by the developing field of neural prosthetics, where a supervisory controller is required to classify activity of a brain region into suitable discrete modes. Here, neural activity in each discrete mode is modeled with nonstationary point processes, and transitions between modes are modeled as hidden Markov models. The effectiveness of this framework is first demonstrated on a simulated example. The identification algorithm is then applied to extracellular neural activity recorded from multi-electrode arrays in the parietal reach region of a rhesus monkey, and the results demonstrate the ability to decode discrete changes even from small data sets\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于Gibbs抽样,提出了一种识别行为或认知状态随时间变化的神经活动数学模型的新方法。这项工作的动机是神经义肢领域的发展,其中需要一个监督控制器将大脑区域的活动分类为合适的离散模式。在这里,每个离散模式下的神经活动用非平稳点过程建模,模式之间的转换用隐马尔可夫模型建模。通过一个仿真实例验证了该框架的有效性。然后将识别算法应用于恒河猴顶叶到达区域的多电极阵列记录的细胞外神经活动,结果表明即使从小数据集也能解码离散变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Hybrid System Models for Supervisory Decoding of Discrete State, with applications to the Parietal Reach Region
Based on Gibbs sampling, a novel method to identify mathematical models of neural activity in response to temporal changes of behavioral or cognitive state is presented. This work is motivated by the developing field of neural prosthetics, where a supervisory controller is required to classify activity of a brain region into suitable discrete modes. Here, neural activity in each discrete mode is modeled with nonstationary point processes, and transitions between modes are modeled as hidden Markov models. The effectiveness of this framework is first demonstrated on a simulated example. The identification algorithm is then applied to extracellular neural activity recorded from multi-electrode arrays in the parietal reach region of a rhesus monkey, and the results demonstrate the ability to decode discrete changes even from small data sets
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1