分子束外延法生长PbTe纳米线

S. G. Schellingerhout, Eline J. de Jong, M. Gomanko, Xin Guan, Yifan Jiang, M. Hoskam, Jason Jung, S. Koelling, O. Moutanabbir, M. Verheijen, S. Frolov, E. Bakkers
{"title":"分子束外延法生长PbTe纳米线","authors":"S. G. Schellingerhout, Eline J. de Jong, M. Gomanko, Xin Guan, Yifan Jiang, M. Hoskam, Jason Jung, S. Koelling, O. Moutanabbir, M. Verheijen, S. Frolov, E. Bakkers","doi":"10.1088/2633-4356/ac4fba","DOIUrl":null,"url":null,"abstract":"\n Advances in quantum technology may come from the discovery of new materials systems that improve the performance or allow for new functionality in electronic devices. Lead telluride (PbTe) is a member of the group IV-VI materials family that has significant untapped potential for exploration. Due to its high electron mobility, strong spin-orbit coupling and ultrahigh dielectric constant it can host few-electron quantum dots and ballistic quantum wires with opportunities for control of electron spins and other quantum degrees of freedom. Here, we report the fabrication of PbTe nanowires by molecular beam epitaxy. We achieve defect-free single crystalline PbTe with large aspect ratios up to 50 suitable for quantum devices. Furthermore, by fabricating a single nanowire field effect transistor, we attain bipolar transport, extract the bandgap and observe Fabry-Pérot oscillations of conductance, a signature of quasiballistic transmission.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Growth of PbTe nanowires by molecular beam epitaxy\",\"authors\":\"S. G. Schellingerhout, Eline J. de Jong, M. Gomanko, Xin Guan, Yifan Jiang, M. Hoskam, Jason Jung, S. Koelling, O. Moutanabbir, M. Verheijen, S. Frolov, E. Bakkers\",\"doi\":\"10.1088/2633-4356/ac4fba\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Advances in quantum technology may come from the discovery of new materials systems that improve the performance or allow for new functionality in electronic devices. Lead telluride (PbTe) is a member of the group IV-VI materials family that has significant untapped potential for exploration. Due to its high electron mobility, strong spin-orbit coupling and ultrahigh dielectric constant it can host few-electron quantum dots and ballistic quantum wires with opportunities for control of electron spins and other quantum degrees of freedom. Here, we report the fabrication of PbTe nanowires by molecular beam epitaxy. We achieve defect-free single crystalline PbTe with large aspect ratios up to 50 suitable for quantum devices. Furthermore, by fabricating a single nanowire field effect transistor, we attain bipolar transport, extract the bandgap and observe Fabry-Pérot oscillations of conductance, a signature of quasiballistic transmission.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ac4fba\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ac4fba","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

量子技术的进步可能来自新材料系统的发现,这些新材料系统可以提高电子设备的性能或允许新功能。碲化铅(PbTe)是IV-VI族材料中的一员,具有重要的未开发潜力。由于其高电子迁移率、强自旋轨道耦合和超高介电常数,它可以承载少量电子量子点和弹道量子线,从而有机会控制电子自旋和其他量子自由度。本文报道了用分子束外延法制备PbTe纳米线的方法。我们实现了无缺陷的单晶PbTe,其宽高比高达50,适用于量子器件。此外,通过制造单纳米线场效应晶体管,我们实现了双极输运,提取了带隙,并观察了电导的法布里-帕姆罗特振荡,这是准稳态传输的一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth of PbTe nanowires by molecular beam epitaxy
Advances in quantum technology may come from the discovery of new materials systems that improve the performance or allow for new functionality in electronic devices. Lead telluride (PbTe) is a member of the group IV-VI materials family that has significant untapped potential for exploration. Due to its high electron mobility, strong spin-orbit coupling and ultrahigh dielectric constant it can host few-electron quantum dots and ballistic quantum wires with opportunities for control of electron spins and other quantum degrees of freedom. Here, we report the fabrication of PbTe nanowires by molecular beam epitaxy. We achieve defect-free single crystalline PbTe with large aspect ratios up to 50 suitable for quantum devices. Furthermore, by fabricating a single nanowire field effect transistor, we attain bipolar transport, extract the bandgap and observe Fabry-Pérot oscillations of conductance, a signature of quasiballistic transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1