{"title":"横向热电子晶体管基底的等离子体波激发","authors":"Leonid Fedichkin, V. Ryzhii, M. Willander","doi":"10.1109/LDS.1998.714539","DOIUrl":null,"url":null,"abstract":"Lateral hot-electron transistors (LHETs) attracts great attention as a possible basis for high frequency (HF) microelectronics. In contrast to previous work the excitation of plasma waves with a linear dispersion law in the LHET base is taken into account. It is shown that plasma effects can play an important role in LHET operation. We propose to induce plasma waves in the base of LHET by the input a.c. voltage. The resonant behaviour of transistor parameters allows us to call it as Resonant Lateral Hot electron Transistor (RLHET). By generalizing Dyakonov-Shur approach we succeeded to obtain analytical expression for LHET transconductance accounting plasma oscillations. It is shown that the emitter current of such a device has a resonant response to the applied HF base voltage determined by the standing plasma waves resonances of 2DEG in the base, which can be in the terahertz range, depending on the base length. The resonant transconductance can significantly exceed its steady state value. This device can be used both for the experimental study of 2DEG parameters and as a selective, tunable HF amplifier.","PeriodicalId":326271,"journal":{"name":"Proceedings. Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures (Cat. No. 98EX199)","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma waves excitation in the base of lateral hot electron transistor\",\"authors\":\"Leonid Fedichkin, V. Ryzhii, M. Willander\",\"doi\":\"10.1109/LDS.1998.714539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lateral hot-electron transistors (LHETs) attracts great attention as a possible basis for high frequency (HF) microelectronics. In contrast to previous work the excitation of plasma waves with a linear dispersion law in the LHET base is taken into account. It is shown that plasma effects can play an important role in LHET operation. We propose to induce plasma waves in the base of LHET by the input a.c. voltage. The resonant behaviour of transistor parameters allows us to call it as Resonant Lateral Hot electron Transistor (RLHET). By generalizing Dyakonov-Shur approach we succeeded to obtain analytical expression for LHET transconductance accounting plasma oscillations. It is shown that the emitter current of such a device has a resonant response to the applied HF base voltage determined by the standing plasma waves resonances of 2DEG in the base, which can be in the terahertz range, depending on the base length. The resonant transconductance can significantly exceed its steady state value. This device can be used both for the experimental study of 2DEG parameters and as a selective, tunable HF amplifier.\",\"PeriodicalId\":326271,\"journal\":{\"name\":\"Proceedings. Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures (Cat. No. 98EX199)\",\"volume\":\"302 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures (Cat. No. 98EX199)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDS.1998.714539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures (Cat. No. 98EX199)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDS.1998.714539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma waves excitation in the base of lateral hot electron transistor
Lateral hot-electron transistors (LHETs) attracts great attention as a possible basis for high frequency (HF) microelectronics. In contrast to previous work the excitation of plasma waves with a linear dispersion law in the LHET base is taken into account. It is shown that plasma effects can play an important role in LHET operation. We propose to induce plasma waves in the base of LHET by the input a.c. voltage. The resonant behaviour of transistor parameters allows us to call it as Resonant Lateral Hot electron Transistor (RLHET). By generalizing Dyakonov-Shur approach we succeeded to obtain analytical expression for LHET transconductance accounting plasma oscillations. It is shown that the emitter current of such a device has a resonant response to the applied HF base voltage determined by the standing plasma waves resonances of 2DEG in the base, which can be in the terahertz range, depending on the base length. The resonant transconductance can significantly exceed its steady state value. This device can be used both for the experimental study of 2DEG parameters and as a selective, tunable HF amplifier.