提取和整合营养相关的关联数据

Qingliang Miao, Ruiyu Fang, Yao Meng
{"title":"提取和整合营养相关的关联数据","authors":"Qingliang Miao, Ruiyu Fang, Yao Meng","doi":"10.1142/S1793351X15400103","DOIUrl":null,"url":null,"abstract":"The development of modern health care and clinical practice increase the need of nutritional and medical data extraction and integration across heterogeneous data sources. It can be useful for researchers and patients if there is a way to extract relevant information and organize it as easily shared and machine-processable linked data. In this paper, we describe an automatic approach that extracts and publishes nutritional linked data including nutritional concepts and relationships extracted from nutritional data sources. Moreover, we link the nutritional data with Linked Open Data. In particular, a CRF-based approach is used to mine food, ingredient, disease entities and their relationships from nutritional text. And then, an extended nutritional ontology is used to organize the extracted data. Finally, we assign semantic links between food, ingredient, disease entities and other equivalent entities in DBPedia, Diseasome and LinkedCT.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extracting and integrating nutrition related linked data\",\"authors\":\"Qingliang Miao, Ruiyu Fang, Yao Meng\",\"doi\":\"10.1142/S1793351X15400103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of modern health care and clinical practice increase the need of nutritional and medical data extraction and integration across heterogeneous data sources. It can be useful for researchers and patients if there is a way to extract relevant information and organize it as easily shared and machine-processable linked data. In this paper, we describe an automatic approach that extracts and publishes nutritional linked data including nutritional concepts and relationships extracted from nutritional data sources. Moreover, we link the nutritional data with Linked Open Data. In particular, a CRF-based approach is used to mine food, ingredient, disease entities and their relationships from nutritional text. And then, an extended nutritional ontology is used to organize the extracted data. Finally, we assign semantic links between food, ingredient, disease entities and other equivalent entities in DBPedia, Diseasome and LinkedCT.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793351X15400103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X15400103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代卫生保健和临床实践的发展增加了对营养和医疗数据提取和跨异构数据源集成的需求。如果有一种方法可以提取相关信息并将其组织为易于共享和机器可处理的链接数据,那么它对研究人员和患者可能是有用的。在本文中,我们描述了一种自动提取和发布营养相关数据的方法,包括从营养数据源中提取的营养概念和关系。此外,我们将营养数据与开放数据链接起来。特别是,基于crf的方法用于从营养文本中挖掘食物、成分、疾病实体及其关系。然后,利用扩展的营养本体对提取的数据进行组织。最后,我们在DBPedia、disease ome和LinkedCT中分配食品、成分、疾病实体和其他等价实体之间的语义链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting and integrating nutrition related linked data
The development of modern health care and clinical practice increase the need of nutritional and medical data extraction and integration across heterogeneous data sources. It can be useful for researchers and patients if there is a way to extract relevant information and organize it as easily shared and machine-processable linked data. In this paper, we describe an automatic approach that extracts and publishes nutritional linked data including nutritional concepts and relationships extracted from nutritional data sources. Moreover, we link the nutritional data with Linked Open Data. In particular, a CRF-based approach is used to mine food, ingredient, disease entities and their relationships from nutritional text. And then, an extended nutritional ontology is used to organize the extracted data. Finally, we assign semantic links between food, ingredient, disease entities and other equivalent entities in DBPedia, Diseasome and LinkedCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets Aggregating financial services data without assumptions: A semantic data reference architecture Reducing search space for Web Service ranking using semantic logs and Semantic FP-Tree based association rule mining An approximation of betweenness centrality for Social Networks Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1