利用心率波动信号的线性和非线性特征检测心律失常

A. Sivanantham, S. Shenbaga Devi
{"title":"利用心率波动信号的线性和非线性特征检测心律失常","authors":"A. Sivanantham, S. Shenbaga Devi","doi":"10.1109/ICACCCT.2014.7019200","DOIUrl":null,"url":null,"abstract":"Earlier detection of Cardiac arrhythmias from long term ECG recording is one of the complex problems in signal processing. In this paper, we proposed an effective algorithm to detect and classify the cardiac abnormalities. By extracting different features in time domain, frequency domain and nonlinear features from heart rate variability (HRV) signals, the algorithm can differentiate between the types of arrhythmias. The features extracted from HRV signal are used to train and test the Support Vector Machine (SVM) classifier to classify Normal Beat, Premature Atrial Contraction (PAC), Right Bundle Branch Block (RBBB), and Paced Beat. The ECG signal is downloaded from MIT-BIH database. Training and testing of classification algorithm yields overall accuracy of 90.26%.","PeriodicalId":239918,"journal":{"name":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cardiac arrhythmia detection using linear and non-linear features of HRV signal\",\"authors\":\"A. Sivanantham, S. Shenbaga Devi\",\"doi\":\"10.1109/ICACCCT.2014.7019200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earlier detection of Cardiac arrhythmias from long term ECG recording is one of the complex problems in signal processing. In this paper, we proposed an effective algorithm to detect and classify the cardiac abnormalities. By extracting different features in time domain, frequency domain and nonlinear features from heart rate variability (HRV) signals, the algorithm can differentiate between the types of arrhythmias. The features extracted from HRV signal are used to train and test the Support Vector Machine (SVM) classifier to classify Normal Beat, Premature Atrial Contraction (PAC), Right Bundle Branch Block (RBBB), and Paced Beat. The ECG signal is downloaded from MIT-BIH database. Training and testing of classification algorithm yields overall accuracy of 90.26%.\",\"PeriodicalId\":239918,\"journal\":{\"name\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCCT.2014.7019200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCCT.2014.7019200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

从长期心电记录中及早发现心律失常是信号处理中的一个复杂问题。本文提出了一种有效的心脏异常检测与分类算法。该算法通过提取心率变异性(HRV)信号的时域、频域和非线性特征来区分心律失常的类型。利用HRV信号提取的特征对支持向量机(SVM)分类器进行训练和测试,对正常心跳、房性早搏(PAC)、右束支传导阻滞(RBBB)和有节奏心跳进行分类。心电信号从MIT-BIH数据库下载。对分类算法进行训练和测试,总体准确率为90.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cardiac arrhythmia detection using linear and non-linear features of HRV signal
Earlier detection of Cardiac arrhythmias from long term ECG recording is one of the complex problems in signal processing. In this paper, we proposed an effective algorithm to detect and classify the cardiac abnormalities. By extracting different features in time domain, frequency domain and nonlinear features from heart rate variability (HRV) signals, the algorithm can differentiate between the types of arrhythmias. The features extracted from HRV signal are used to train and test the Support Vector Machine (SVM) classifier to classify Normal Beat, Premature Atrial Contraction (PAC), Right Bundle Branch Block (RBBB), and Paced Beat. The ECG signal is downloaded from MIT-BIH database. Training and testing of classification algorithm yields overall accuracy of 90.26%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid approach to synchronization in real time multiprocessor systems An effective tree metrics graph cut algorithm for MR brain image segmentation and tumor Identification Performance tradeoffs between diversity schemes in wireless systems Fixed point pipelined architecture for QR decomposition Reliability of different levels of cascaded H-Bridge inverter: An investigation and comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1