基于随机响应的隐私保护协同过滤

H. Kikuchi, Anna Mochizuki
{"title":"基于随机响应的隐私保护协同过滤","authors":"H. Kikuchi, Anna Mochizuki","doi":"10.1109/IMIS.2012.141","DOIUrl":null,"url":null,"abstract":"This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds random noise to the original rating value and a server provides a disguised data to allow users to predict rating value for unseen items. The proposed scheme performs perturbation in randomized response scheme, which preserves higher degree of privacy than that of additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation to reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.","PeriodicalId":290976,"journal":{"name":"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Privacy-Preserving Collaborative Filtering Using Randomized Response\",\"authors\":\"H. Kikuchi, Anna Mochizuki\",\"doi\":\"10.1109/IMIS.2012.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds random noise to the original rating value and a server provides a disguised data to allow users to predict rating value for unseen items. The proposed scheme performs perturbation in randomized response scheme, which preserves higher degree of privacy than that of additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation to reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.\",\"PeriodicalId\":290976,\"journal\":{\"name\":\"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMIS.2012.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2012.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种新的隐私保护推荐方法,将其分类为随机扰动方案,其中用户在原始评分值中加入随机噪声,服务器提供伪装数据,允许用户预测未见项目的评分值。该方案在随机响应方案中进行摄动,比加性摄动保留了更高的隐私度。为了解决随机响应精度降低的问题,该方案使用由贝叶斯估计得到的后验概率分布函数来重建原始分布,以修正由伪装矩阵计算的项目之间的相似度。一个简单的实验表明,该方案提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy-Preserving Collaborative Filtering Using Randomized Response
This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds random noise to the original rating value and a server provides a disguised data to allow users to predict rating value for unseen items. The proposed scheme performs perturbation in randomized response scheme, which preserves higher degree of privacy than that of additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation to reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global Trends in Workplace Learning Web of Things as a Product Improvement tool: Furniture as Case Study Modified Dummy Sequence Generator for DSI on PAPR Reduction in OFDM Systems Data Aggregation Techniques in Heart Vessel Modelling and Recognition of Pathological Changes Preventing the Access of Fraudulent WEB Sites by Using a Special Two-Dimensional Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1