增量线性化:可满足模非线性算法与超越函数的实用方法

A. Cimatti, A. Griggio, A. Irfan, Marco Roveri, R. Sebastiani
{"title":"增量线性化:可满足模非线性算法与超越函数的实用方法","authors":"A. Cimatti, A. Griggio, A. Irfan, Marco Roveri, R. Sebastiani","doi":"10.1109/SYNASC.2018.00016","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incremental linearization: A practical approach to satisfiability modulo nonlinear arithmetic and transcendental functions\",\"authors\":\"A. Cimatti, A. Griggio, A. Irfan, Marco Roveri, R. Sebastiani\",\"doi\":\"10.1109/SYNASC.2018.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

可满足模数理论(SMT)是确定一阶公式相对于某些理论或理论组合的可满足性的问题。在本文中,我们概述了我们最近的方法,称为增量线性化,它成功地解决了基于实数非线性算法(NRA)理论的SMT问题,整数非线性算法(NIA)及其组合,以及超越(指数和三角)函数增广的NRA (NTA)。此外,我们还展示了一些实验结果,并概述了有趣的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incremental linearization: A practical approach to satisfiability modulo nonlinear arithmetic and transcendental functions
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1