基于深度神经网络的运动图像分析与分类

Isah Salim Ahmad, Shuai Zhang, S. Saminu, Isselmou Abd El Kader, Jamilu Maaruf Musa, Imran Javid, Souha Kamhi, U. Kulsum
{"title":"基于深度神经网络的运动图像分析与分类","authors":"Isah Salim Ahmad, Shuai Zhang, S. Saminu, Isselmou Abd El Kader, Jamilu Maaruf Musa, Imran Javid, Souha Kamhi, U. Kulsum","doi":"10.31258/jamt.2.2.85-93","DOIUrl":null,"url":null,"abstract":"Motor imagery based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalogram (EEG) signals to study brain activity with left and right-hand movement. Deep learning (DL) has been employed for motor imagery (MI). In this article, a deep neural network (DNN) is proposed for classification of left and right movement of EEG signal using Common Spatial Pattern (CSP) as feature extraction with standard gradient descent (GD) with momentum and adaptive learning rate LR. (GDMLR), the performance is compared using a confusion matrix, the average classification accuracy is   87%, which is improved as compared with state-of-the-art methods that used different datasets.","PeriodicalId":287674,"journal":{"name":"Journal of Applied Materials and Technology","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis and Classification of Motor Imagery Using Deep Neural Network\",\"authors\":\"Isah Salim Ahmad, Shuai Zhang, S. Saminu, Isselmou Abd El Kader, Jamilu Maaruf Musa, Imran Javid, Souha Kamhi, U. Kulsum\",\"doi\":\"10.31258/jamt.2.2.85-93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor imagery based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalogram (EEG) signals to study brain activity with left and right-hand movement. Deep learning (DL) has been employed for motor imagery (MI). In this article, a deep neural network (DNN) is proposed for classification of left and right movement of EEG signal using Common Spatial Pattern (CSP) as feature extraction with standard gradient descent (GD) with momentum and adaptive learning rate LR. (GDMLR), the performance is compared using a confusion matrix, the average classification accuracy is   87%, which is improved as compared with state-of-the-art methods that used different datasets.\",\"PeriodicalId\":287674,\"journal\":{\"name\":\"Journal of Applied Materials and Technology\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Materials and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31258/jamt.2.2.85-93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Materials and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31258/jamt.2.2.85-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于脑机接口(BCI)的运动图像技术虽然存在一定的难点,但也引起了人们的重视。它在人类的认知和决策中起着至关重要的作用。许多研究人员使用脑电图(EEG)信号来研究左、右运动的大脑活动。深度学习(DL)已被应用于运动意象(MI)。本文提出了一种深度神经网络(DNN),以公共空间模式(CSP)作为特征提取,采用带动量和自适应学习率LR的标准梯度下降(GD)进行脑电信号的左右运动分类。(GDMLR),使用混淆矩阵对性能进行比较,平均分类准确率为87%,与使用不同数据集的最先进方法相比有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Classification of Motor Imagery Using Deep Neural Network
Motor imagery based on brain-computer interface (BCI) has attracted important research attention despite its difficulty. It plays a vital role in human cognition and helps in making the decision. Many researchers use electroencephalogram (EEG) signals to study brain activity with left and right-hand movement. Deep learning (DL) has been employed for motor imagery (MI). In this article, a deep neural network (DNN) is proposed for classification of left and right movement of EEG signal using Common Spatial Pattern (CSP) as feature extraction with standard gradient descent (GD) with momentum and adaptive learning rate LR. (GDMLR), the performance is compared using a confusion matrix, the average classification accuracy is   87%, which is improved as compared with state-of-the-art methods that used different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Computational Fluid Dynamics Modeling of Fermentation Reactions in Bioethanol Fermentor: A Review Various Methods of Strengthening Reinforced Concrete Beam-Column Joint Subjected Earthquake-Type Loading Using Fibre-Reinforced Polymers: A Critical Review Energy Router Applications in the Electric Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1