Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko
{"title":"从注视数据中学习合作个性化策略","authors":"Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko","doi":"10.1145/3332165.3347933","DOIUrl":null,"url":null,"abstract":"An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Learning Cooperative Personalized Policies from Gaze Data\",\"authors\":\"Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko\",\"doi\":\"10.1145/3332165.3347933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Cooperative Personalized Policies from Gaze Data
An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.