从注视数据中学习合作个性化策略

Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko
{"title":"从注视数据中学习合作个性化策略","authors":"Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko","doi":"10.1145/3332165.3347933","DOIUrl":null,"url":null,"abstract":"An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Learning Cooperative Personalized Policies from Gaze Data\",\"authors\":\"Christoph Gebhardt, Brian Hecox, B. V. Opheusden, Daniel J. Wigdor, James M. Hillis, Otmar Hilliges, Hrvoje Benko\",\"doi\":\"10.1145/3332165.3347933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

一个理想的混合现实(MR)系统只会在对人有用的时候呈现虚拟信息(例如,标签)。然而,决定一个标签何时有用是具有挑战性的:它取决于各种因素,包括当前任务、以前的知识、上下文等。在本文中,我们提出了一种强化学习(RL)方法来学习何时显示或隐藏给定眼动数据的对象标签。我们通过展示智能代理可以学习合作策略来证明这种方法的能力,这些策略比手动设计的启发式方法更好地支持用户的视觉搜索任务。此外,我们展示了我们的方法对更现实的环境和用例的适用性(例如,杂货店购物)。通过将MR对象标记作为无模型RL问题,我们可以通过观察用户行为来隐式学习策略,而不需要视觉搜索模型或数据注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Cooperative Personalized Policies from Gaze Data
An ideal Mixed Reality (MR) system would only present virtual information (e.g., a label) when it is useful to the person. However, deciding when a label is useful is challenging: it depends on a variety of factors, including the current task, previous knowledge, context, etc. In this paper, we propose a Reinforcement Learning (RL) method to learn when to show or hide an object's label given eye movement data. We demonstrate the capabilities of this approach by showing that an intelligent agent can learn cooperative policies that better support users in a visual search task than manually designed heuristics. Furthermore, we show the applicability of our approach to more realistic environments and use cases (e.g., grocery shopping). By posing MR object labeling as a model-free RL problem, we can learn policies implicitly by observing users' behavior without requiring a visual search model or data annotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LightAnchors Session details: Session 7B: Haptics TipText: Eyes-Free Text Entry on a Fingertip Keyboard Tessutivo Tactlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1