NimbRo-OP2:成熟的3D打印开放人形研究平台

Grzegorz Ficht, Philipp Allgeuer, Hafez Farazi, Sven Behnke
{"title":"NimbRo-OP2:成熟的3D打印开放人形研究平台","authors":"Grzegorz Ficht, Philipp Allgeuer, Hafez Farazi, Sven Behnke","doi":"10.1109/HUMANOIDS.2017.8246944","DOIUrl":null,"url":null,"abstract":"The versatility of humanoid robots in locomotion, full-body motion, interaction with unmodified human environments, and intuitive human-robot interaction led to increased research interest. Multiple smaller platforms are available for research, but these require a miniaturized environment to interact with–and often the small scale of the robot diminishes the influence of factors which would have affected larger robots. Unfortunately, many research platforms in the larger size range are less affordable, more difficult to operate, maintain and modify, and very often closed-source. In this work, we introduce NimbRo-OP2, an affordable, fully open-source platform in terms of both hardware and software. Being almost 135 cm tall and only 18 kg in weight, the robot is not only capable of interacting in an environment meant for humans, but also easy and safe to operate and does not require a gantry when doing so. The exoskeleton of the robot is 3D printed, which produces a lightweight and visually appealing design. We present all mechanical and electrical aspects of the robot, as well as some of the software features of our well-established open-source ROS software. The NimbRo-OP2 performed at RoboCup 2017 in Nagoya, Japan, where it won the Humanoid League AdultSize Soccer competition and Technical Challenge.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"NimbRo-OP2: Grown-up 3D printed open humanoid platform for research\",\"authors\":\"Grzegorz Ficht, Philipp Allgeuer, Hafez Farazi, Sven Behnke\",\"doi\":\"10.1109/HUMANOIDS.2017.8246944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The versatility of humanoid robots in locomotion, full-body motion, interaction with unmodified human environments, and intuitive human-robot interaction led to increased research interest. Multiple smaller platforms are available for research, but these require a miniaturized environment to interact with–and often the small scale of the robot diminishes the influence of factors which would have affected larger robots. Unfortunately, many research platforms in the larger size range are less affordable, more difficult to operate, maintain and modify, and very often closed-source. In this work, we introduce NimbRo-OP2, an affordable, fully open-source platform in terms of both hardware and software. Being almost 135 cm tall and only 18 kg in weight, the robot is not only capable of interacting in an environment meant for humans, but also easy and safe to operate and does not require a gantry when doing so. The exoskeleton of the robot is 3D printed, which produces a lightweight and visually appealing design. We present all mechanical and electrical aspects of the robot, as well as some of the software features of our well-established open-source ROS software. The NimbRo-OP2 performed at RoboCup 2017 in Nagoya, Japan, where it won the Humanoid League AdultSize Soccer competition and Technical Challenge.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

人形机器人在运动、全身运动、与未修改的人类环境的交互以及直观的人机交互方面的多功能性引起了越来越多的研究兴趣。有多个小型平台可用于研究,但这些平台需要一个小型化的环境来进行交互,而且通常小型机器人会减少影响大型机器人的因素的影响。不幸的是,许多规模较大的研究平台价格较低,更难以操作、维护和修改,而且往往是闭源的。在这项工作中,我们介绍NimbRo-OP2,这是一个价格合理的,在硬件和软件方面完全开源的平台。身高近135厘米,体重只有18公斤,机器人不仅能够在人类的环境中互动,而且操作简单安全,不需要龙门架。机器人的外骨骼是3D打印的,这产生了一个轻量级和视觉上吸引人的设计。我们展示了机器人的所有机械和电气方面,以及我们完善的开源ROS软件的一些软件功能。NimbRo-OP2在日本名古屋举行的2017年机器人世界杯上进行了表演,并获得了人形联赛成人足球比赛和技术挑战赛的冠军。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NimbRo-OP2: Grown-up 3D printed open humanoid platform for research
The versatility of humanoid robots in locomotion, full-body motion, interaction with unmodified human environments, and intuitive human-robot interaction led to increased research interest. Multiple smaller platforms are available for research, but these require a miniaturized environment to interact with–and often the small scale of the robot diminishes the influence of factors which would have affected larger robots. Unfortunately, many research platforms in the larger size range are less affordable, more difficult to operate, maintain and modify, and very often closed-source. In this work, we introduce NimbRo-OP2, an affordable, fully open-source platform in terms of both hardware and software. Being almost 135 cm tall and only 18 kg in weight, the robot is not only capable of interacting in an environment meant for humans, but also easy and safe to operate and does not require a gantry when doing so. The exoskeleton of the robot is 3D printed, which produces a lightweight and visually appealing design. We present all mechanical and electrical aspects of the robot, as well as some of the software features of our well-established open-source ROS software. The NimbRo-OP2 performed at RoboCup 2017 in Nagoya, Japan, where it won the Humanoid League AdultSize Soccer competition and Technical Challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1