阳离子交换对聚合物原位粘度的影响:低矿化度聚合物驱的实验研究

D. Rousseau, M. Salaün
{"title":"阳离子交换对聚合物原位粘度的影响:低矿化度聚合物驱的实验研究","authors":"D. Rousseau, M. Salaün","doi":"10.2523/iptc-22907-ms","DOIUrl":null,"url":null,"abstract":"\n Cation exchange occurs when water with a different salinity as the connate brine is injected in a reservoir. During polymer flooding operations, the potential release of divalent cations by the rock can have a detrimental impact on the in-situ viscosity in the polymer bank. The objective of this work was to assess for the risk related to cations exchange in an Argentinian oilfield and to provide guidelines for the injection water design.\n Reservoir rock samples were first submitted to mineralogical analysis involving scanning-electron microscopy (SEM), X-Ray Diffraction (XRD) and determination of their Cation Exchange Capacities (CEC). Coreflood tests were then performed where the effluents were analyzed for their cations composition. In these experiments, two main scenarios for the composition of the low-salinity injection water (with or without softening) were investigated and the transport properties of the polymer were determined. As a more exploratory approach, polymer was also injected in a 12-meter-long slim tube filled with crushed reservoir rock, to assess if it could be exposed to released cations.\n The results showed that all reservoir rocks investigated had high CEC, which was consistent with their high clay contents, and that significant cations exchanges took place during low salinity water injection, although no formation damage occurred, showing the stability of the clays. During injection of the softened water, evidences of significant divalent (and monovalent) cations release from the rock were found. During injection of the unsoftened water, a marked and long-term adsorption of the injected calcium cations was observed, corresponding to a depletion in calcium of the injected water. This suggests that, quite counter-intuitively, using unsoftened water as polymer make up water could be interesting in view of economics because the cations exchanges could entail an increase of the in-situ viscosity. The coreflood test results also showed that the presence of polymer in the injected water had no impact on the cations exchanges mechanisms. The partial results from the slim tube injection test suggested, however, that the retardation of the polymer bank caused by polymer adsorption was sufficient to avoid for its viscosity to be affected by the changes in cations distribution.\n This study illustrates the importance of cation exchange mechanisms and their potential impact for polymer flooding. It also shows that these effects can be investigated in a representative manner at the lab and that practical guidelines for the composition of the polymer injection water can be deduced from the experiments, provided a risk for in-situ viscosity reduction is identified.","PeriodicalId":153269,"journal":{"name":"Day 2 Thu, March 02, 2023","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Of Cation Exchange On Polymer In-Situ Viscosity: An Experimental Investigation For A Low-Salinity Polymer Flooding Case\",\"authors\":\"D. Rousseau, M. Salaün\",\"doi\":\"10.2523/iptc-22907-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cation exchange occurs when water with a different salinity as the connate brine is injected in a reservoir. During polymer flooding operations, the potential release of divalent cations by the rock can have a detrimental impact on the in-situ viscosity in the polymer bank. The objective of this work was to assess for the risk related to cations exchange in an Argentinian oilfield and to provide guidelines for the injection water design.\\n Reservoir rock samples were first submitted to mineralogical analysis involving scanning-electron microscopy (SEM), X-Ray Diffraction (XRD) and determination of their Cation Exchange Capacities (CEC). Coreflood tests were then performed where the effluents were analyzed for their cations composition. In these experiments, two main scenarios for the composition of the low-salinity injection water (with or without softening) were investigated and the transport properties of the polymer were determined. As a more exploratory approach, polymer was also injected in a 12-meter-long slim tube filled with crushed reservoir rock, to assess if it could be exposed to released cations.\\n The results showed that all reservoir rocks investigated had high CEC, which was consistent with their high clay contents, and that significant cations exchanges took place during low salinity water injection, although no formation damage occurred, showing the stability of the clays. During injection of the softened water, evidences of significant divalent (and monovalent) cations release from the rock were found. During injection of the unsoftened water, a marked and long-term adsorption of the injected calcium cations was observed, corresponding to a depletion in calcium of the injected water. This suggests that, quite counter-intuitively, using unsoftened water as polymer make up water could be interesting in view of economics because the cations exchanges could entail an increase of the in-situ viscosity. The coreflood test results also showed that the presence of polymer in the injected water had no impact on the cations exchanges mechanisms. The partial results from the slim tube injection test suggested, however, that the retardation of the polymer bank caused by polymer adsorption was sufficient to avoid for its viscosity to be affected by the changes in cations distribution.\\n This study illustrates the importance of cation exchange mechanisms and their potential impact for polymer flooding. It also shows that these effects can be investigated in a representative manner at the lab and that practical guidelines for the composition of the polymer injection water can be deduced from the experiments, provided a risk for in-situ viscosity reduction is identified.\",\"PeriodicalId\":153269,\"journal\":{\"name\":\"Day 2 Thu, March 02, 2023\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Thu, March 02, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22907-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, March 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22907-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当油藏中注入与原生盐水盐度不同的水时,会发生阳离子交换。在聚合物驱过程中,岩石可能释放的二价阳离子会对聚合物库的原位粘度产生不利影响。这项工作的目的是评估阿根廷某油田阳离子交换的风险,并为注水设计提供指导。储层岩石样品首先进行了矿物学分析,包括扫描电子显微镜(SEM), x射线衍射(XRD)和阳离子交换容量(CEC)的测定。然后进行岩心注水试验,对流出物的阳离子组成进行分析。在这些实验中,研究了低矿化度注入水(有或没有软化)组成的两种主要情况,并确定了聚合物的输运特性。作为一种更具探索性的方法,研究人员还将聚合物注入一个12米长的细管中,管内充满压碎的储层岩石,以评估聚合物是否可以暴露在释放的阳离子中。结果表明:所研究的储层岩石均具有较高的CEC,这与粘土含量高一致;低矿化度注水过程中阳离子交换明显,但未造成地层破坏,说明粘土具有稳定性。在注入软化水的过程中,发现了明显的二价(和单价)阳离子从岩石中释放的证据。在注入未软化水的过程中,观察到注入的钙离子有明显的长期吸附,对应于注入水中钙的消耗。这表明,从经济角度来看,使用未软化的水作为聚合物组成水可能是有趣的,这与直觉相反,因为阳离子交换可能会增加原位粘度。岩心驱替试验结果也表明,注入水中聚合物的存在对阳离子交换机制没有影响。然而,细管注射试验的部分结果表明,聚合物吸附引起的聚合物库的缓阻足以避免其粘度受到阳离子分布变化的影响。这项研究说明了阳离子交换机制的重要性及其对聚合物驱的潜在影响。它还表明,这些影响可以在实验室以具有代表性的方式进行研究,并且可以从实验中推断出聚合物注入水组成的实用指南,前提是确定了原位粘度降低的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact Of Cation Exchange On Polymer In-Situ Viscosity: An Experimental Investigation For A Low-Salinity Polymer Flooding Case
Cation exchange occurs when water with a different salinity as the connate brine is injected in a reservoir. During polymer flooding operations, the potential release of divalent cations by the rock can have a detrimental impact on the in-situ viscosity in the polymer bank. The objective of this work was to assess for the risk related to cations exchange in an Argentinian oilfield and to provide guidelines for the injection water design. Reservoir rock samples were first submitted to mineralogical analysis involving scanning-electron microscopy (SEM), X-Ray Diffraction (XRD) and determination of their Cation Exchange Capacities (CEC). Coreflood tests were then performed where the effluents were analyzed for their cations composition. In these experiments, two main scenarios for the composition of the low-salinity injection water (with or without softening) were investigated and the transport properties of the polymer were determined. As a more exploratory approach, polymer was also injected in a 12-meter-long slim tube filled with crushed reservoir rock, to assess if it could be exposed to released cations. The results showed that all reservoir rocks investigated had high CEC, which was consistent with their high clay contents, and that significant cations exchanges took place during low salinity water injection, although no formation damage occurred, showing the stability of the clays. During injection of the softened water, evidences of significant divalent (and monovalent) cations release from the rock were found. During injection of the unsoftened water, a marked and long-term adsorption of the injected calcium cations was observed, corresponding to a depletion in calcium of the injected water. This suggests that, quite counter-intuitively, using unsoftened water as polymer make up water could be interesting in view of economics because the cations exchanges could entail an increase of the in-situ viscosity. The coreflood test results also showed that the presence of polymer in the injected water had no impact on the cations exchanges mechanisms. The partial results from the slim tube injection test suggested, however, that the retardation of the polymer bank caused by polymer adsorption was sufficient to avoid for its viscosity to be affected by the changes in cations distribution. This study illustrates the importance of cation exchange mechanisms and their potential impact for polymer flooding. It also shows that these effects can be investigated in a representative manner at the lab and that practical guidelines for the composition of the polymer injection water can be deduced from the experiments, provided a risk for in-situ viscosity reduction is identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancement of Open Hole Gravel Pack and Zonal Isolation with Selective Intelligent Completion in Deepwater Malaysia Reaching Beyond the Limit, the Furthest Step Out S Shape Wells in Deep Gas Well Project Application and Performance Monitoring of Compound Air Plasma Lightning Rejection System Malaysia's First Use of Subsea Release Plug System for Dual Barrier Offline Cementing (DBOC) Across Hydrocarbon Section Helps Streamline Activities Drilling Weak Formations in Rumaila Field in Southern Iraq — Modelling Shear Failure Using Numerical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1