Mi Li, Lianqing Liu, N. Xi, Yuechao Wang, Wenxue Wang
{"title":"利用原子力显微镜对临床淋巴瘤细胞的单个靶蛋白进行成像和定位","authors":"Mi Li, Lianqing Liu, N. Xi, Yuechao Wang, Wenxue Wang","doi":"10.1109/NANOMED.2015.7492507","DOIUrl":null,"url":null,"abstract":"The wide applications of atomic force microscopy (AFM) in the past decade have contributed much to the field of cell biology, providing a lot of novel insights into cellular behaviors at the nanoscale. However, current AFM studies are commonly performed on cell lines cultured in vitro which are quite different from the cells in the human body. Directly investigating the physiological activities on tumor cells from clinical patients is of great significance for helping us to better understand the actual cellular activities taking place in the clinical environment. Under the fluorescence recognition of specific tumor cell surface marker, we have used AFM to investigate the binding affinity and nanoscale distributions of CD20 target protein directly on tumor cells prepared from the bone marrow of lymphoma patients. The results provide a new idea to develop closer links between laboratory study and clinical practice, which may have potential impacts on diverse fields such as drug evaluation and efficacy prediction.","PeriodicalId":187049,"journal":{"name":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Imaging and mapping individual target proteins on clinical lymphoma cells by AFM\",\"authors\":\"Mi Li, Lianqing Liu, N. Xi, Yuechao Wang, Wenxue Wang\",\"doi\":\"10.1109/NANOMED.2015.7492507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wide applications of atomic force microscopy (AFM) in the past decade have contributed much to the field of cell biology, providing a lot of novel insights into cellular behaviors at the nanoscale. However, current AFM studies are commonly performed on cell lines cultured in vitro which are quite different from the cells in the human body. Directly investigating the physiological activities on tumor cells from clinical patients is of great significance for helping us to better understand the actual cellular activities taking place in the clinical environment. Under the fluorescence recognition of specific tumor cell surface marker, we have used AFM to investigate the binding affinity and nanoscale distributions of CD20 target protein directly on tumor cells prepared from the bone marrow of lymphoma patients. The results provide a new idea to develop closer links between laboratory study and clinical practice, which may have potential impacts on diverse fields such as drug evaluation and efficacy prediction.\",\"PeriodicalId\":187049,\"journal\":{\"name\":\"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOMED.2015.7492507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2015.7492507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging and mapping individual target proteins on clinical lymphoma cells by AFM
The wide applications of atomic force microscopy (AFM) in the past decade have contributed much to the field of cell biology, providing a lot of novel insights into cellular behaviors at the nanoscale. However, current AFM studies are commonly performed on cell lines cultured in vitro which are quite different from the cells in the human body. Directly investigating the physiological activities on tumor cells from clinical patients is of great significance for helping us to better understand the actual cellular activities taking place in the clinical environment. Under the fluorescence recognition of specific tumor cell surface marker, we have used AFM to investigate the binding affinity and nanoscale distributions of CD20 target protein directly on tumor cells prepared from the bone marrow of lymphoma patients. The results provide a new idea to develop closer links between laboratory study and clinical practice, which may have potential impacts on diverse fields such as drug evaluation and efficacy prediction.