为Web文档创建语义指纹

K. Krieger, J. Schneider, Christian Nywelt, D. Rösner
{"title":"为Web文档创建语义指纹","authors":"K. Krieger, J. Schneider, Christian Nywelt, D. Rösner","doi":"10.1145/2797115.2797132","DOIUrl":null,"url":null,"abstract":"With Semantic Web technologies and Linked Data datasets we are able to not only retrieve the textual content of a document but also to automatically create formal semantic descriptions of its content. In this paper we present a Linked Data-based approach to automatically generate semantic fingerprints for Web documents. Our approach exploits the structured information in Linked Data datasets to derive an explicit semantic description of a Web resource. A two-stage evaluation of the implementation of the presented approach shows its feasibility and robustness.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Creating Semantic Fingerprints for Web Documents\",\"authors\":\"K. Krieger, J. Schneider, Christian Nywelt, D. Rösner\",\"doi\":\"10.1145/2797115.2797132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With Semantic Web technologies and Linked Data datasets we are able to not only retrieve the textual content of a document but also to automatically create formal semantic descriptions of its content. In this paper we present a Linked Data-based approach to automatically generate semantic fingerprints for Web documents. Our approach exploits the structured information in Linked Data datasets to derive an explicit semantic description of a Web resource. A two-stage evaluation of the implementation of the presented approach shows its feasibility and robustness.\",\"PeriodicalId\":386229,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2797115.2797132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

使用语义Web技术和关联数据数据集,我们不仅能够检索文档的文本内容,还能够自动创建其内容的正式语义描述。在本文中,我们提出了一种基于关联数据的方法来自动生成Web文档的语义指纹。我们的方法利用关联数据数据集中的结构化信息来派生Web资源的显式语义描述。对该方法的实施进行了两阶段的评估,证明了该方法的可行性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creating Semantic Fingerprints for Web Documents
With Semantic Web technologies and Linked Data datasets we are able to not only retrieve the textual content of a document but also to automatically create formal semantic descriptions of its content. In this paper we present a Linked Data-based approach to automatically generate semantic fingerprints for Web documents. Our approach exploits the structured information in Linked Data datasets to derive an explicit semantic description of a Web resource. A two-stage evaluation of the implementation of the presented approach shows its feasibility and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and predicting information search behavior An Ontology Enrichment Approach by Using DBpedia Semantic Integration of Structured Data Powered by Linked Open Data A LOD-based, query construction and refinement service for web search engines Recommending Customizable Products: A Multiple Choice Knapsack Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1