{"title":"基于KNN的随机奇异值分解在电影推荐系统中的应用","authors":"Sukanya Patra, Boudhayan Ganguly","doi":"10.1177/2516600X19848956","DOIUrl":null,"url":null,"abstract":"Abstract Online recommender systems are an integral part of e-commerce. There are a plethora of algorithms following different approaches. However, most of the approaches except the singular value decomposition (SVD), do not provide any insight into the underlying patterns/concepts used in item rating. SVD used underlying features of movies but are computationally resource-heavy and performs poorly when there is data sparsity. In this article, we perform a comparative study among several pre-processing algorithms on SVD. In the experiments, we have used the MovieLens 1M dataset to compare the performance of these algorithms. KNN-based approach was used to find out K-nearest neighbors of users and their ratings were then used to impute the missing values. Experiments were conducted using different distance measures, such as Jaccard and Euclidian. We found that when the missing values were imputed using the mean of similar users and the distance measure was Euclidean, the KNN-based (K-Nearest Neighbour) approach of pre-processing the SVD was performing the best. Based on our comparative study, data managers can choose to employ the algorithm best suited for their business.","PeriodicalId":196664,"journal":{"name":"Journal of Operations and Strategic Planning","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvising Singular Value Decomposition by KNN for Use in Movie Recommender Systems\",\"authors\":\"Sukanya Patra, Boudhayan Ganguly\",\"doi\":\"10.1177/2516600X19848956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Online recommender systems are an integral part of e-commerce. There are a plethora of algorithms following different approaches. However, most of the approaches except the singular value decomposition (SVD), do not provide any insight into the underlying patterns/concepts used in item rating. SVD used underlying features of movies but are computationally resource-heavy and performs poorly when there is data sparsity. In this article, we perform a comparative study among several pre-processing algorithms on SVD. In the experiments, we have used the MovieLens 1M dataset to compare the performance of these algorithms. KNN-based approach was used to find out K-nearest neighbors of users and their ratings were then used to impute the missing values. Experiments were conducted using different distance measures, such as Jaccard and Euclidian. We found that when the missing values were imputed using the mean of similar users and the distance measure was Euclidean, the KNN-based (K-Nearest Neighbour) approach of pre-processing the SVD was performing the best. Based on our comparative study, data managers can choose to employ the algorithm best suited for their business.\",\"PeriodicalId\":196664,\"journal\":{\"name\":\"Journal of Operations and Strategic Planning\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operations and Strategic Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516600X19848956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operations and Strategic Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516600X19848956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvising Singular Value Decomposition by KNN for Use in Movie Recommender Systems
Abstract Online recommender systems are an integral part of e-commerce. There are a plethora of algorithms following different approaches. However, most of the approaches except the singular value decomposition (SVD), do not provide any insight into the underlying patterns/concepts used in item rating. SVD used underlying features of movies but are computationally resource-heavy and performs poorly when there is data sparsity. In this article, we perform a comparative study among several pre-processing algorithms on SVD. In the experiments, we have used the MovieLens 1M dataset to compare the performance of these algorithms. KNN-based approach was used to find out K-nearest neighbors of users and their ratings were then used to impute the missing values. Experiments were conducted using different distance measures, such as Jaccard and Euclidian. We found that when the missing values were imputed using the mean of similar users and the distance measure was Euclidean, the KNN-based (K-Nearest Neighbour) approach of pre-processing the SVD was performing the best. Based on our comparative study, data managers can choose to employ the algorithm best suited for their business.