混合人工智能在芯片年龄测试中的应用与挑战综述

Cong Xu, Wensheng Chen, Mingkuan Lin, Jianli Lu, Yunghsiao Chung, Jiahui Zou, Ciliang Yang
{"title":"混合人工智能在芯片年龄测试中的应用与挑战综述","authors":"Cong Xu, Wensheng Chen, Mingkuan Lin, Jianli Lu, Yunghsiao Chung, Jiahui Zou, Ciliang Yang","doi":"10.23977/jaip.2023.060309","DOIUrl":null,"url":null,"abstract":": As technology rapidly advances, semiconductor devices play a crucial role in various fields. However, these devices experience aging over time, leading to performance degradation, failure, or system crashes. Real-time aging detection of semiconductor devices is essential. This paper presents a real-time aging detection technique for semiconductor devices, combining deep learning and evolutionary algorithms, effectively assessing and predicting device aging states using Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). These features are then input into evolutionary algorithm frameworks, such as Genetic Algorithms (GA) and Genetic Algorithms (PSO), to identify and predict aging trends. The adaptation of evolutionary algorithms ensures good generalization for various semiconductor devices. Through extensive experimental data analysis, the proposed technique demonstrates excellent accuracy and real-time performance compared to traditional aging detection methods. In addition, it also monitors their operation in real-time, providing valuable support for maintenance and management personnel. The findings contribute to improving semiconductor device reliability and stability, providing a robust foundation for intelligent and automated maintenance.","PeriodicalId":293823,"journal":{"name":"Journal of Artificial Intelligence Practice","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications and challenges of hybrid artificial intelligence in chip age testing: a comprehensive review\",\"authors\":\"Cong Xu, Wensheng Chen, Mingkuan Lin, Jianli Lu, Yunghsiao Chung, Jiahui Zou, Ciliang Yang\",\"doi\":\"10.23977/jaip.2023.060309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": As technology rapidly advances, semiconductor devices play a crucial role in various fields. However, these devices experience aging over time, leading to performance degradation, failure, or system crashes. Real-time aging detection of semiconductor devices is essential. This paper presents a real-time aging detection technique for semiconductor devices, combining deep learning and evolutionary algorithms, effectively assessing and predicting device aging states using Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). These features are then input into evolutionary algorithm frameworks, such as Genetic Algorithms (GA) and Genetic Algorithms (PSO), to identify and predict aging trends. The adaptation of evolutionary algorithms ensures good generalization for various semiconductor devices. Through extensive experimental data analysis, the proposed technique demonstrates excellent accuracy and real-time performance compared to traditional aging detection methods. In addition, it also monitors their operation in real-time, providing valuable support for maintenance and management personnel. The findings contribute to improving semiconductor device reliability and stability, providing a robust foundation for intelligent and automated maintenance.\",\"PeriodicalId\":293823,\"journal\":{\"name\":\"Journal of Artificial Intelligence Practice\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23977/jaip.2023.060309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jaip.2023.060309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着科技的飞速发展,半导体器件在各个领域发挥着至关重要的作用。但是,这些设备会随着时间的推移而老化,从而导致性能下降、故障或系统崩溃。半导体器件的实时老化检测至关重要。本文提出了一种半导体器件的实时老化检测技术,结合深度学习和进化算法,利用卷积神经网络(CNN)和递归神经网络(RNN)有效地评估和预测器件的老化状态。然后将这些特征输入到进化算法框架中,如遗传算法(GA)和遗传算法(PSO),以识别和预测老龄化趋势。进化算法的适应性保证了对各种半导体器件的良好通用性。通过大量的实验数据分析,与传统的老化检测方法相比,该技术具有良好的准确性和实时性。此外,它还可以实时监控其运行情况,为维护和管理人员提供宝贵的支持。研究结果有助于提高半导体器件的可靠性和稳定性,为智能和自动化维护提供坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications and challenges of hybrid artificial intelligence in chip age testing: a comprehensive review
: As technology rapidly advances, semiconductor devices play a crucial role in various fields. However, these devices experience aging over time, leading to performance degradation, failure, or system crashes. Real-time aging detection of semiconductor devices is essential. This paper presents a real-time aging detection technique for semiconductor devices, combining deep learning and evolutionary algorithms, effectively assessing and predicting device aging states using Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). These features are then input into evolutionary algorithm frameworks, such as Genetic Algorithms (GA) and Genetic Algorithms (PSO), to identify and predict aging trends. The adaptation of evolutionary algorithms ensures good generalization for various semiconductor devices. Through extensive experimental data analysis, the proposed technique demonstrates excellent accuracy and real-time performance compared to traditional aging detection methods. In addition, it also monitors their operation in real-time, providing valuable support for maintenance and management personnel. The findings contribute to improving semiconductor device reliability and stability, providing a robust foundation for intelligent and automated maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Key Technologies of Computer Artificial Intelligence Recognition Research and Application of Health Code Recognition Based on Paddle OCR under the Background of Epidemic Prevention and Control A Deep Reinforcement Learning Based Emotional State Analysis Method for Online Learning Design of an AI Health Risk Assessment System for Dietary Hygiene of Key Groups Based on IoT Wearable Devices Design and Implementation of Tour Guide Robot for Red Education Base
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1