{"title":"fpga中二维离散余弦反变换(IDCT)的低功耗研究","authors":"O. Cadenas, M. Brandt, G. Megson, N. Goswami","doi":"10.1109/ISCE.2004.1375990","DOIUrl":null,"url":null,"abstract":"Design for low power in FPGA is rather limited since technology factors affecting power are either fixed or limited for FPGA families. This paper investigates opportunities for power savings of a pipelined 2D IDCT design at the architecture and logic level. We report power consumption savings of over 25% achieved in FPGA circuits obtained from clock gating implementation of optimizations made at the algorithmic level(1).","PeriodicalId":169376,"journal":{"name":"IEEE International Symposium on Consumer Electronics, 2004","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into low power of a 2D inverse discrete cosine transform (IDCT) in FPGAs\",\"authors\":\"O. Cadenas, M. Brandt, G. Megson, N. Goswami\",\"doi\":\"10.1109/ISCE.2004.1375990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design for low power in FPGA is rather limited since technology factors affecting power are either fixed or limited for FPGA families. This paper investigates opportunities for power savings of a pipelined 2D IDCT design at the architecture and logic level. We report power consumption savings of over 25% achieved in FPGA circuits obtained from clock gating implementation of optimizations made at the algorithmic level(1).\",\"PeriodicalId\":169376,\"journal\":{\"name\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2004.1375990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Consumer Electronics, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2004.1375990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation into low power of a 2D inverse discrete cosine transform (IDCT) in FPGAs
Design for low power in FPGA is rather limited since technology factors affecting power are either fixed or limited for FPGA families. This paper investigates opportunities for power savings of a pipelined 2D IDCT design at the architecture and logic level. We report power consumption savings of over 25% achieved in FPGA circuits obtained from clock gating implementation of optimizations made at the algorithmic level(1).