滑动窗口最大相关匹配自适应算法的稳态性能分析

W. Liu, A. Hu
{"title":"滑动窗口最大相关匹配自适应算法的稳态性能分析","authors":"W. Liu, A. Hu","doi":"10.1109/WCSP.2010.5632579","DOIUrl":null,"url":null,"abstract":"This paper presents the sliding exponential window max-correlation matching (SEWMCM) adaptive algorithm and the sliding rectangular window max-correlation matching (SRWMCM) adaptive algorithm for finding the maximum correlation of two different signal vectors. A unified approach to the steady-state excess mean square error (MSE) performance analyses for proposed algorithms is developed, including several general close-form analytical expressions based on the non-stationary system identification model. It is conclusively shown by numerical simulations that the SEWMCM algorithm converges faster than the SRWMCM algorithm, whereas the estimation accuracy and the steady-state performance of the SRWMCM outperform those of the SEWMCM and the conventional exponentially-weighted RLS (EWRLS).","PeriodicalId":448094,"journal":{"name":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"1090 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state performance analyses for sliding window max-correlation matching adaptive algorithms\",\"authors\":\"W. Liu, A. Hu\",\"doi\":\"10.1109/WCSP.2010.5632579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the sliding exponential window max-correlation matching (SEWMCM) adaptive algorithm and the sliding rectangular window max-correlation matching (SRWMCM) adaptive algorithm for finding the maximum correlation of two different signal vectors. A unified approach to the steady-state excess mean square error (MSE) performance analyses for proposed algorithms is developed, including several general close-form analytical expressions based on the non-stationary system identification model. It is conclusively shown by numerical simulations that the SEWMCM algorithm converges faster than the SRWMCM algorithm, whereas the estimation accuracy and the steady-state performance of the SRWMCM outperform those of the SEWMCM and the conventional exponentially-weighted RLS (EWRLS).\",\"PeriodicalId\":448094,\"journal\":{\"name\":\"2010 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"1090 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2010.5632579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2010.5632579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了滑动指数窗最大相关匹配(SEWMCM)自适应算法和滑动矩形窗最大相关匹配(SRWMCM)自适应算法,用于寻找两个不同信号向量的最大相关。提出了一种统一的方法来分析所提出的算法的稳态超额均方误差(MSE)性能,包括几种基于非平稳系统辨识模型的通用封闭形式解析表达式。数值模拟结果表明,SEWMCM算法收敛速度快于SRWMCM算法,而SRWMCM算法的估计精度和稳态性能优于SEWMCM算法和传统的指数加权RLS (EWRLS)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady-state performance analyses for sliding window max-correlation matching adaptive algorithms
This paper presents the sliding exponential window max-correlation matching (SEWMCM) adaptive algorithm and the sliding rectangular window max-correlation matching (SRWMCM) adaptive algorithm for finding the maximum correlation of two different signal vectors. A unified approach to the steady-state excess mean square error (MSE) performance analyses for proposed algorithms is developed, including several general close-form analytical expressions based on the non-stationary system identification model. It is conclusively shown by numerical simulations that the SEWMCM algorithm converges faster than the SRWMCM algorithm, whereas the estimation accuracy and the steady-state performance of the SRWMCM outperform those of the SEWMCM and the conventional exponentially-weighted RLS (EWRLS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel MEO constellation for global communication without inter-satellite links Performance analysis of a selection cooperation scheme in multi-source multi-relay networks Efficient energy detector for spectrum sensing in complex Gaussian noise Compression of CQI feedback with compressive sensing in adaptive OFDM systems A BICM-MD-ID scheme in FFH system for combatting partial-band interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1