{"title":"一个实时适用的动态手势识别框架","authors":"Thomas Kopinski, A. Gepperth, U. Handmann","doi":"10.1109/ITSC.2015.381","DOIUrl":null,"url":null,"abstract":"We present a system for efficient dynamic hand gesture recognition based on a single time-of-flight sensor. As opposed to other approaches, we simply rely on depth data to interpret user movement with the hand in mid-air. We set up a large database to train multilayer perceptrons (MLPs) which are subsequently used for classification of static hand poses that define the targeted dynamic gestures. In order to remain robust against noise and to balance the low sensor resolution, PCA is used for data cropping and highly descriptive features, obtainable in real-time, are presented. Our simple yet efficient definition of a dynamic hand gesture shows how strong results are achievable in an automotive environment allowing for interesting and sophisticated applications to be realized.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Real-Time Applicable Dynamic Hand Gesture Recognition Framework\",\"authors\":\"Thomas Kopinski, A. Gepperth, U. Handmann\",\"doi\":\"10.1109/ITSC.2015.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system for efficient dynamic hand gesture recognition based on a single time-of-flight sensor. As opposed to other approaches, we simply rely on depth data to interpret user movement with the hand in mid-air. We set up a large database to train multilayer perceptrons (MLPs) which are subsequently used for classification of static hand poses that define the targeted dynamic gestures. In order to remain robust against noise and to balance the low sensor resolution, PCA is used for data cropping and highly descriptive features, obtainable in real-time, are presented. Our simple yet efficient definition of a dynamic hand gesture shows how strong results are achievable in an automotive environment allowing for interesting and sophisticated applications to be realized.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Real-Time Applicable Dynamic Hand Gesture Recognition Framework
We present a system for efficient dynamic hand gesture recognition based on a single time-of-flight sensor. As opposed to other approaches, we simply rely on depth data to interpret user movement with the hand in mid-air. We set up a large database to train multilayer perceptrons (MLPs) which are subsequently used for classification of static hand poses that define the targeted dynamic gestures. In order to remain robust against noise and to balance the low sensor resolution, PCA is used for data cropping and highly descriptive features, obtainable in real-time, are presented. Our simple yet efficient definition of a dynamic hand gesture shows how strong results are achievable in an automotive environment allowing for interesting and sophisticated applications to be realized.