{"title":"具有扩展扰动和未知时变时滞的失匹配不确定系统的单相二阶滑模控制","authors":"Trang Cong Nguyen, Chiem Trong Hien, D. Phan","doi":"10.55579/jaec.202262.353","DOIUrl":null,"url":null,"abstract":"In this paper, a novel single phase second order sliding mode controller (SPSOSMC) is proposed for the mismatched uncertain systems with extended disturbances and unknown time-varying delays. The main achievements of this study consist of three tasks: 1) a reaching phase in conventional sliding mode control (CSMC) technique is removed to ensure the global stability of the system; 2) an influence of the undesired high-frequency oscillation phenomenon in control input is vanished; 3) an exogenous perturbation is generally extended to the k-order disturbance of state variable. Firstly, a single phase switching manifold function is defined to eliminate the reaching phase in CSMC. Secondly, an unmeasurable state variable is estimated by using the proposed reduced-order sliding mode observer (ROSMO) tool. Next, a SPSOSMC is built based on the help of ROSMO tool and output information only. Then, a sufficient condition is established by employing the linear matrix inequality (LMI) technique and Lyapunov function theory such that the resulting sliding mode dynamics is asymptotically stable. Finally, a numerical example is simulated via the well-known MATLAB software to validate the effectiveness of the proposed technique.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. ","PeriodicalId":250655,"journal":{"name":"J. Adv. Eng. Comput.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single Phase Second Order Sliding Mode Controller for Mismatched Uncertain Systems with Extended Disturbances and Unknown Time-Varying Delays\",\"authors\":\"Trang Cong Nguyen, Chiem Trong Hien, D. Phan\",\"doi\":\"10.55579/jaec.202262.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel single phase second order sliding mode controller (SPSOSMC) is proposed for the mismatched uncertain systems with extended disturbances and unknown time-varying delays. The main achievements of this study consist of three tasks: 1) a reaching phase in conventional sliding mode control (CSMC) technique is removed to ensure the global stability of the system; 2) an influence of the undesired high-frequency oscillation phenomenon in control input is vanished; 3) an exogenous perturbation is generally extended to the k-order disturbance of state variable. Firstly, a single phase switching manifold function is defined to eliminate the reaching phase in CSMC. Secondly, an unmeasurable state variable is estimated by using the proposed reduced-order sliding mode observer (ROSMO) tool. Next, a SPSOSMC is built based on the help of ROSMO tool and output information only. Then, a sufficient condition is established by employing the linear matrix inequality (LMI) technique and Lyapunov function theory such that the resulting sliding mode dynamics is asymptotically stable. Finally, a numerical example is simulated via the well-known MATLAB software to validate the effectiveness of the proposed technique.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. \",\"PeriodicalId\":250655,\"journal\":{\"name\":\"J. Adv. Eng. Comput.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Adv. Eng. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55579/jaec.202262.353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Adv. Eng. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55579/jaec.202262.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Phase Second Order Sliding Mode Controller for Mismatched Uncertain Systems with Extended Disturbances and Unknown Time-Varying Delays
In this paper, a novel single phase second order sliding mode controller (SPSOSMC) is proposed for the mismatched uncertain systems with extended disturbances and unknown time-varying delays. The main achievements of this study consist of three tasks: 1) a reaching phase in conventional sliding mode control (CSMC) technique is removed to ensure the global stability of the system; 2) an influence of the undesired high-frequency oscillation phenomenon in control input is vanished; 3) an exogenous perturbation is generally extended to the k-order disturbance of state variable. Firstly, a single phase switching manifold function is defined to eliminate the reaching phase in CSMC. Secondly, an unmeasurable state variable is estimated by using the proposed reduced-order sliding mode observer (ROSMO) tool. Next, a SPSOSMC is built based on the help of ROSMO tool and output information only. Then, a sufficient condition is established by employing the linear matrix inequality (LMI) technique and Lyapunov function theory such that the resulting sliding mode dynamics is asymptotically stable. Finally, a numerical example is simulated via the well-known MATLAB software to validate the effectiveness of the proposed technique.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.