基于图匹配方法的noma辅助NB-IoT网络下行用户连接密度最大化

Shashwat Mishra, Lou Salaün, J. Gorce, Chung Shue Chen
{"title":"基于图匹配方法的noma辅助NB-IoT网络下行用户连接密度最大化","authors":"Shashwat Mishra, Lou Salaün, J. Gorce, Chung Shue Chen","doi":"10.1109/VTC2022-Fall57202.2022.10012847","DOIUrl":null,"url":null,"abstract":"We develop a framework for maximizing the number of transmitted packets for devices in a Narrowband Internet of Things (NB-IoT) network using non-orthogonal multiple access (NOMA) in the downlink. The base station (BS) chooses one of the multiple available physical resource blocks (PRBs) that are well separated in frequency for a device, giving them the advantage of exploiting frequency diversity. The scheduling strategy focuses on the two-fold problem involving efficient device clustering and optimum power allocation. This problem is a mixed-integer non-convex problem. We propose a bipartite graph matching approach, termed minimum weight full matching with pruning (MWFMP), to address the problem over multiple PRBs and solve it under the quality-of-service (QoS), allowable PRB, power budget, and interference constraints. Additionally, we provide a comparison with a greedy heuristic, the multi-PRB stratified device allocation (MPSDA), where we extend our previous work for a single PRB connectivity problem. Furthermore, we compare our algorithms to orthogonal multiple access (OMA) scheduling, which is prevalent in legacy LTE networks. We show that our algorithms steadily outperform the connectivity performance offered by OMA.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing Downlink User Connection Density in NOMA-aided NB-IoT Networks Through a Graph Matching Approach\",\"authors\":\"Shashwat Mishra, Lou Salaün, J. Gorce, Chung Shue Chen\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a framework for maximizing the number of transmitted packets for devices in a Narrowband Internet of Things (NB-IoT) network using non-orthogonal multiple access (NOMA) in the downlink. The base station (BS) chooses one of the multiple available physical resource blocks (PRBs) that are well separated in frequency for a device, giving them the advantage of exploiting frequency diversity. The scheduling strategy focuses on the two-fold problem involving efficient device clustering and optimum power allocation. This problem is a mixed-integer non-convex problem. We propose a bipartite graph matching approach, termed minimum weight full matching with pruning (MWFMP), to address the problem over multiple PRBs and solve it under the quality-of-service (QoS), allowable PRB, power budget, and interference constraints. Additionally, we provide a comparison with a greedy heuristic, the multi-PRB stratified device allocation (MPSDA), where we extend our previous work for a single PRB connectivity problem. Furthermore, we compare our algorithms to orthogonal multiple access (OMA) scheduling, which is prevalent in legacy LTE networks. We show that our algorithms steadily outperform the connectivity performance offered by OMA.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个框架,用于在下行链路中使用非正交多址(NOMA)来最大化窄带物联网(NB-IoT)网络中设备的传输数据包数量。基站(BS)从设备的多个可用物理资源块(PRBs)中选择一个,这些物理资源块在频率上分离得很好,从而使它们具有利用频率分集的优势。该调度策略关注的是高效的设备集群和最优的功率分配的双重问题。该问题是一个混合整数非凸问题。我们提出了一种二部图匹配方法,称为最小权值与修剪的完全匹配(MWFMP),以解决多个PRB的问题,并在服务质量(QoS)、允许的PRB、功率预算和干扰约束下解决该问题。此外,我们还提供了与贪婪启发式的比较,即多PRB分层设备分配(MPSDA),其中我们扩展了先前针对单个PRB连接问题的工作。此外,我们将我们的算法与传统LTE网络中普遍存在的正交多址(OMA)调度进行了比较。我们表明,我们的算法稳步优于OMA提供的连接性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing Downlink User Connection Density in NOMA-aided NB-IoT Networks Through a Graph Matching Approach
We develop a framework for maximizing the number of transmitted packets for devices in a Narrowband Internet of Things (NB-IoT) network using non-orthogonal multiple access (NOMA) in the downlink. The base station (BS) chooses one of the multiple available physical resource blocks (PRBs) that are well separated in frequency for a device, giving them the advantage of exploiting frequency diversity. The scheduling strategy focuses on the two-fold problem involving efficient device clustering and optimum power allocation. This problem is a mixed-integer non-convex problem. We propose a bipartite graph matching approach, termed minimum weight full matching with pruning (MWFMP), to address the problem over multiple PRBs and solve it under the quality-of-service (QoS), allowable PRB, power budget, and interference constraints. Additionally, we provide a comparison with a greedy heuristic, the multi-PRB stratified device allocation (MPSDA), where we extend our previous work for a single PRB connectivity problem. Furthermore, we compare our algorithms to orthogonal multiple access (OMA) scheduling, which is prevalent in legacy LTE networks. We show that our algorithms steadily outperform the connectivity performance offered by OMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1