基于判别迁移学习的单样本人脸识别

Junlin Hu, Jiwen Lu, Xiuzhuang Zhou, Yap-Peng Tan
{"title":"基于判别迁移学习的单样本人脸识别","authors":"Junlin Hu, Jiwen Lu, Xiuzhuang Zhou, Yap-Peng Tan","doi":"10.1109/ICB.2015.7139095","DOIUrl":null,"url":null,"abstract":"Discriminant analysis is an important technique for face recognition because it can extract discriminative features to classify different persons. However, most existing discriminant analysis methods fail to work for single-sample face recognition (SSFR) because there is only a single training sample per person such that the within-class variation of this person cannot be estimated in such scenario. In this paper, we present a new discriminative transfer learning (DTL) approach for SSFR, where discriminant analysis is performed on a multiple-sample generic training set and then transferred into the single-sample gallery set. Specifically, our DTL learns a feature projection to minimize the intra-class variation and maximize the inter-class variation of samples in the training set, and minimize the difference between the generic training set and the gallery set, simultaneously. Experimental results on three face datasets including the FERET, CAS-PEAL-R1, and LFW datasets are presented to show the efficacy of our method.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Discriminative transfer learning for single-sample face recognition\",\"authors\":\"Junlin Hu, Jiwen Lu, Xiuzhuang Zhou, Yap-Peng Tan\",\"doi\":\"10.1109/ICB.2015.7139095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminant analysis is an important technique for face recognition because it can extract discriminative features to classify different persons. However, most existing discriminant analysis methods fail to work for single-sample face recognition (SSFR) because there is only a single training sample per person such that the within-class variation of this person cannot be estimated in such scenario. In this paper, we present a new discriminative transfer learning (DTL) approach for SSFR, where discriminant analysis is performed on a multiple-sample generic training set and then transferred into the single-sample gallery set. Specifically, our DTL learns a feature projection to minimize the intra-class variation and maximize the inter-class variation of samples in the training set, and minimize the difference between the generic training set and the gallery set, simultaneously. Experimental results on three face datasets including the FERET, CAS-PEAL-R1, and LFW datasets are presented to show the efficacy of our method.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

判别分析是人脸识别的一项重要技术,它可以提取具有判别性的特征对不同的人进行分类。然而,大多数现有的判别分析方法都不能用于单样本人脸识别(SSFR),因为每个人只有一个训练样本,因此在这种情况下无法估计该人的类内变化。在本文中,我们提出了一种新的判别迁移学习(DTL)方法,该方法在多样本通用训练集上进行判别分析,然后将其转移到单样本库集。具体来说,我们的DTL学习了一个特征投影,以最小化训练集中样本的类内变化和最大化类间变化,同时最小化通用训练集和库集之间的差异。在FERET、cas - pel - r1和LFW三个人脸数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminative transfer learning for single-sample face recognition
Discriminant analysis is an important technique for face recognition because it can extract discriminative features to classify different persons. However, most existing discriminant analysis methods fail to work for single-sample face recognition (SSFR) because there is only a single training sample per person such that the within-class variation of this person cannot be estimated in such scenario. In this paper, we present a new discriminative transfer learning (DTL) approach for SSFR, where discriminant analysis is performed on a multiple-sample generic training set and then transferred into the single-sample gallery set. Specifically, our DTL learns a feature projection to minimize the intra-class variation and maximize the inter-class variation of samples in the training set, and minimize the difference between the generic training set and the gallery set, simultaneously. Experimental results on three face datasets including the FERET, CAS-PEAL-R1, and LFW datasets are presented to show the efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1