灰色-马尔可夫组合模型在港口货物吞吐量预测中的应用

Shuang Liu, Lixia Tian
{"title":"灰色-马尔可夫组合模型在港口货物吞吐量预测中的应用","authors":"Shuang Liu, Lixia Tian","doi":"10.1109/FSKD.2012.6234311","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a dynamic analysis model which combines grey GM(1,1)model and Markov chain model as the Grey-Markov model to predict the cargo throughput. Because the forecasting accuracy of single grey GM(1,1)model is lower. The Grey-Markov model can improve the accuracy prediction for the cargo throughput. The new combined model has the advantages of both Grey forecasting method and Markov chains forecasting method. Using the data of Qin Huangdao port is conducted to evaluate the Grey-Markov model which shows that the precision of the Grey-Markov model is better than the Grey model.","PeriodicalId":337941,"journal":{"name":"International Conference on Fuzzy Systems and Knowledge Discovery","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The application of Grey-Markov combined model for port cargo throughput forecasting\",\"authors\":\"Shuang Liu, Lixia Tian\",\"doi\":\"10.1109/FSKD.2012.6234311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a dynamic analysis model which combines grey GM(1,1)model and Markov chain model as the Grey-Markov model to predict the cargo throughput. Because the forecasting accuracy of single grey GM(1,1)model is lower. The Grey-Markov model can improve the accuracy prediction for the cargo throughput. The new combined model has the advantages of both Grey forecasting method and Markov chains forecasting method. Using the data of Qin Huangdao port is conducted to evaluate the Grey-Markov model which shows that the precision of the Grey-Markov model is better than the Grey model.\",\"PeriodicalId\":337941,\"journal\":{\"name\":\"International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2012.6234311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2012.6234311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种灰色GM(1,1)模型和马尔可夫链模型相结合的动态分析模型,作为灰色马尔可夫模型来预测货物吞吐量。由于单灰色GM(1,1)模型的预测精度较低。灰色马尔可夫模型可以提高货物吞吐量预测的准确性。该组合模型具有灰色预测法和马尔可夫链预测法的优点。利用秦皇岛港口的数据对灰色-马尔可夫模型进行了评价,结果表明,灰色-马尔可夫模型的精度优于灰色模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of Grey-Markov combined model for port cargo throughput forecasting
In this paper, we proposed a dynamic analysis model which combines grey GM(1,1)model and Markov chain model as the Grey-Markov model to predict the cargo throughput. Because the forecasting accuracy of single grey GM(1,1)model is lower. The Grey-Markov model can improve the accuracy prediction for the cargo throughput. The new combined model has the advantages of both Grey forecasting method and Markov chains forecasting method. Using the data of Qin Huangdao port is conducted to evaluate the Grey-Markov model which shows that the precision of the Grey-Markov model is better than the Grey model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor Node Localization based on Convex Optimization in Wireless Sensor Networks Invertible singleton fuzzy models: application to petroleum production control systems An algorithm for extension of clausal beliefs Computer system model in college examination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1