基于传感器数据和支持向量机的脑卒中患者评估自动化

P. Otten, S. Son, Jonghyun Kim
{"title":"基于传感器数据和支持向量机的脑卒中患者评估自动化","authors":"P. Otten, S. Son, Jonghyun Kim","doi":"10.1109/SOCA.2014.29","DOIUrl":null,"url":null,"abstract":"Evaluation of post-stroke hemiplegic patients is an important aspect of rehabilitation, especially for assessing improvement of a patient's condition from a treatment. It is also commonly used to evaluate stroke patients during theraputic clinical trials [1]. The Fugl-Meyer Assessment is one of the most widely recognized and utilized measures of body function impairment for post-stroke patients [2]. We propose a method for automating the upper-limb portion of the Fugl-Meyer Assessment by gathering data from sensors monitoring the patient. Features are extracted from the data and processed by a Support Vector Machine (SVM). The output from the SVM returns a value that can be used to score a patient's upper limb functionality. This system will enable automatic and inexpensive stroke patient evaluation that can save up to 30 minutes per patient for a doctor, providing a huge time-saving service for doctors and stroke researchers.","PeriodicalId":138805,"journal":{"name":"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automating Stroke Patient Evaluation Using Sensor Data and SVM\",\"authors\":\"P. Otten, S. Son, Jonghyun Kim\",\"doi\":\"10.1109/SOCA.2014.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of post-stroke hemiplegic patients is an important aspect of rehabilitation, especially for assessing improvement of a patient's condition from a treatment. It is also commonly used to evaluate stroke patients during theraputic clinical trials [1]. The Fugl-Meyer Assessment is one of the most widely recognized and utilized measures of body function impairment for post-stroke patients [2]. We propose a method for automating the upper-limb portion of the Fugl-Meyer Assessment by gathering data from sensors monitoring the patient. Features are extracted from the data and processed by a Support Vector Machine (SVM). The output from the SVM returns a value that can be used to score a patient's upper limb functionality. This system will enable automatic and inexpensive stroke patient evaluation that can save up to 30 minutes per patient for a doctor, providing a huge time-saving service for doctors and stroke researchers.\",\"PeriodicalId\":138805,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCA.2014.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCA.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

脑卒中后偏瘫患者的评估是康复的一个重要方面,特别是评估患者治疗后病情的改善。在治疗性临床试验中也常用于评估脑卒中患者[1]。Fugl-Meyer评估是脑卒中后患者身体功能损害的最广泛认可和使用的测量方法之一[2]。我们提出了一种通过收集监测患者的传感器数据来自动化Fugl-Meyer评估上肢部分的方法。从数据中提取特征并通过支持向量机(SVM)进行处理。支持向量机的输出返回一个值,该值可用于对患者的上肢功能进行评分。该系统将实现自动和廉价的中风患者评估,可以为医生节省每个患者30分钟的时间,为医生和中风研究人员节省大量时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automating Stroke Patient Evaluation Using Sensor Data and SVM
Evaluation of post-stroke hemiplegic patients is an important aspect of rehabilitation, especially for assessing improvement of a patient's condition from a treatment. It is also commonly used to evaluate stroke patients during theraputic clinical trials [1]. The Fugl-Meyer Assessment is one of the most widely recognized and utilized measures of body function impairment for post-stroke patients [2]. We propose a method for automating the upper-limb portion of the Fugl-Meyer Assessment by gathering data from sensors monitoring the patient. Features are extracted from the data and processed by a Support Vector Machine (SVM). The output from the SVM returns a value that can be used to score a patient's upper limb functionality. This system will enable automatic and inexpensive stroke patient evaluation that can save up to 30 minutes per patient for a doctor, providing a huge time-saving service for doctors and stroke researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCE^MT: A Multi-tenant Service Composition Engine A User-Friendly Authentication Solution Using NFC Card Emulation on Android Crowdsourced Mobile Sensing for Smarter City Life Improved Heuristics with Data Rounding for Combinatorial Food Packing Problems Situated Engagement and Virtual Services in a Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1