N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino, Erica Salvato
{"title":"强化学习在自由电子激光器强度控制中的应用研究","authors":"N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino, Erica Salvato","doi":"10.1109/ICMECT.2019.8932150","DOIUrl":null,"url":null,"abstract":"The optimization of particle accelerators is a challenging task, and many different approaches have been proposed in years, to obtain an optimal tuning of the plant and to keep it optimally tuned despite drifts or disturbances. Indeed, the classical model-free approaches (such as Gradient Ascent or Extremum Seeking algorithms) have intrinsic limitations. To overcome those limitations, Machine Learning techniques, in particular, the Reinforcement Learning, are attracting more and more attention in the particle accelerator community. The purpose of this paper is to apply a Reinforcement Learning model-free approach to the alignment of a seed laser, based on a rather general target function depending on the laser trajectory. The study focuses on the alignment of the lasers at FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste. In particular, we employ Q-learning with linear function approximation and report experimental results obtained in two setups, which are the actual setups where the final application has to be deployed. Despite the simplicity of the approach, we report satisfactory preliminary results, that represent the first step toward a fully automatic procedure for seed laser to the electron beam. Such a superimposition is, at present, performed manually.","PeriodicalId":309525,"journal":{"name":"2019 23rd International Conference on Mechatronics Technology (ICMT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Toward the Application of Reinforcement Learning to the Intensity Control of a Seeded Free-Electron Laser\",\"authors\":\"N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino, Erica Salvato\",\"doi\":\"10.1109/ICMECT.2019.8932150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of particle accelerators is a challenging task, and many different approaches have been proposed in years, to obtain an optimal tuning of the plant and to keep it optimally tuned despite drifts or disturbances. Indeed, the classical model-free approaches (such as Gradient Ascent or Extremum Seeking algorithms) have intrinsic limitations. To overcome those limitations, Machine Learning techniques, in particular, the Reinforcement Learning, are attracting more and more attention in the particle accelerator community. The purpose of this paper is to apply a Reinforcement Learning model-free approach to the alignment of a seed laser, based on a rather general target function depending on the laser trajectory. The study focuses on the alignment of the lasers at FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste. In particular, we employ Q-learning with linear function approximation and report experimental results obtained in two setups, which are the actual setups where the final application has to be deployed. Despite the simplicity of the approach, we report satisfactory preliminary results, that represent the first step toward a fully automatic procedure for seed laser to the electron beam. Such a superimposition is, at present, performed manually.\",\"PeriodicalId\":309525,\"journal\":{\"name\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECT.2019.8932150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 23rd International Conference on Mechatronics Technology (ICMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECT.2019.8932150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward the Application of Reinforcement Learning to the Intensity Control of a Seeded Free-Electron Laser
The optimization of particle accelerators is a challenging task, and many different approaches have been proposed in years, to obtain an optimal tuning of the plant and to keep it optimally tuned despite drifts or disturbances. Indeed, the classical model-free approaches (such as Gradient Ascent or Extremum Seeking algorithms) have intrinsic limitations. To overcome those limitations, Machine Learning techniques, in particular, the Reinforcement Learning, are attracting more and more attention in the particle accelerator community. The purpose of this paper is to apply a Reinforcement Learning model-free approach to the alignment of a seed laser, based on a rather general target function depending on the laser trajectory. The study focuses on the alignment of the lasers at FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste. In particular, we employ Q-learning with linear function approximation and report experimental results obtained in two setups, which are the actual setups where the final application has to be deployed. Despite the simplicity of the approach, we report satisfactory preliminary results, that represent the first step toward a fully automatic procedure for seed laser to the electron beam. Such a superimposition is, at present, performed manually.