Q. Liu, W. Shen, F. Wang, D. Boroyevich, V. Stefanovic, M. Arpilliere
{"title":"igbt对PWM逆变器传导电磁干扰特性和建模的实验评价","authors":"Q. Liu, W. Shen, F. Wang, D. Boroyevich, V. Stefanovic, M. Arpilliere","doi":"10.1109/PESC.2003.1217751","DOIUrl":null,"url":null,"abstract":"As a step to achieve the objective of predicting electromagnetic interference (EMI) noise in IGBT PWM inverters, this paper proposes a new and practical EMI noise source modeling method. An equivalent Thevenin source in the frequency-domain, including the voltage source and source impedance, is employed to model the main EMI noise emission source - the IGBT switching. The modeling approach for both the differential mode (DM) and common mode (CM) noise source is studied. The methodology is verified experimentally using a simple, controlled testbed. The important issues on measurement repeatability and data processing are also investigated and discussed.","PeriodicalId":236199,"journal":{"name":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Experimental evaluation of IGBTs for characterizing and modeling conducted EMI emission in PWM inverters\",\"authors\":\"Q. Liu, W. Shen, F. Wang, D. Boroyevich, V. Stefanovic, M. Arpilliere\",\"doi\":\"10.1109/PESC.2003.1217751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a step to achieve the objective of predicting electromagnetic interference (EMI) noise in IGBT PWM inverters, this paper proposes a new and practical EMI noise source modeling method. An equivalent Thevenin source in the frequency-domain, including the voltage source and source impedance, is employed to model the main EMI noise emission source - the IGBT switching. The modeling approach for both the differential mode (DM) and common mode (CM) noise source is studied. The methodology is verified experimentally using a simple, controlled testbed. The important issues on measurement repeatability and data processing are also investigated and discussed.\",\"PeriodicalId\":236199,\"journal\":{\"name\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.2003.1217751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.2003.1217751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental evaluation of IGBTs for characterizing and modeling conducted EMI emission in PWM inverters
As a step to achieve the objective of predicting electromagnetic interference (EMI) noise in IGBT PWM inverters, this paper proposes a new and practical EMI noise source modeling method. An equivalent Thevenin source in the frequency-domain, including the voltage source and source impedance, is employed to model the main EMI noise emission source - the IGBT switching. The modeling approach for both the differential mode (DM) and common mode (CM) noise source is studied. The methodology is verified experimentally using a simple, controlled testbed. The important issues on measurement repeatability and data processing are also investigated and discussed.