非高斯干扰环境下变步长自适应算法的性能

Y. R. Zheng, R. Lynch
{"title":"非高斯干扰环境下变步长自适应算法的性能","authors":"Y. R. Zheng, R. Lynch","doi":"10.1109/AERO.2009.4839470","DOIUrl":null,"url":null,"abstract":"Two variable step-size normalized least mean square (VSS-NLMS) algorithms, namely the Non-Parametric VSS-NLMS and Switched Mode VSS-NLMS, are reformulated into complex signal form for STAP applications. The performances of these two VSS NLMS algorithms in Gaussian and compound-K clutters are evaluated via a phased array space-slow-time STAP example. We find that the misadjustment behaviors are inconsistent with the excess MSEs which is a better measure of STAP performance. Both VSS-NLMS algorithms outperform conventional fixed step-size (FSS) NLMS algorithms with fast convergence and low steady-state excess MSE. The SM-VSS-NLMS provides a better performance compromise than the NP-VSS-NLMS with much lower steady-state excess MSEs and slightly slower convergence speeds. The performance gain of both VSS algorithms reduces in heavy-tailed clutter environments than that in Gaussian clutters. Their robustness against impulsive interference is better than conventional FSS-NLMS.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performances of variable step-size adaptive algorithms in non-Gaussian interference environments\",\"authors\":\"Y. R. Zheng, R. Lynch\",\"doi\":\"10.1109/AERO.2009.4839470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two variable step-size normalized least mean square (VSS-NLMS) algorithms, namely the Non-Parametric VSS-NLMS and Switched Mode VSS-NLMS, are reformulated into complex signal form for STAP applications. The performances of these two VSS NLMS algorithms in Gaussian and compound-K clutters are evaluated via a phased array space-slow-time STAP example. We find that the misadjustment behaviors are inconsistent with the excess MSEs which is a better measure of STAP performance. Both VSS-NLMS algorithms outperform conventional fixed step-size (FSS) NLMS algorithms with fast convergence and low steady-state excess MSE. The SM-VSS-NLMS provides a better performance compromise than the NP-VSS-NLMS with much lower steady-state excess MSEs and slightly slower convergence speeds. The performance gain of both VSS algorithms reduces in heavy-tailed clutter environments than that in Gaussian clutters. Their robustness against impulsive interference is better than conventional FSS-NLMS.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

两种变步长归一化最小均方(VSS-NLMS)算法,即非参数VSS-NLMS和切换模式VSS-NLMS,被重新表述为用于STAP应用的复杂信号形式。通过相控阵空间-慢时STAP实例,对这两种VSS NLMS算法在高斯和复合k杂波下的性能进行了评价。我们发现失调行为与过剩的mse不一致,而过剩的mse是衡量STAP绩效的一个更好的指标。两种VSS-NLMS算法均优于传统的固定步长(FSS) NLMS算法,具有快速收敛和低稳态过量MSE的特点。SM-VSS-NLMS提供了比NP-VSS-NLMS更好的性能折衷,具有更低的稳态过剩mse和稍慢的收敛速度。两种VSS算法在重尾杂波环境下的性能增益都比在高斯杂波环境下的性能增益降低。它们对脉冲干扰的鲁棒性优于传统的FSS-NLMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performances of variable step-size adaptive algorithms in non-Gaussian interference environments
Two variable step-size normalized least mean square (VSS-NLMS) algorithms, namely the Non-Parametric VSS-NLMS and Switched Mode VSS-NLMS, are reformulated into complex signal form for STAP applications. The performances of these two VSS NLMS algorithms in Gaussian and compound-K clutters are evaluated via a phased array space-slow-time STAP example. We find that the misadjustment behaviors are inconsistent with the excess MSEs which is a better measure of STAP performance. Both VSS-NLMS algorithms outperform conventional fixed step-size (FSS) NLMS algorithms with fast convergence and low steady-state excess MSE. The SM-VSS-NLMS provides a better performance compromise than the NP-VSS-NLMS with much lower steady-state excess MSEs and slightly slower convergence speeds. The performance gain of both VSS algorithms reduces in heavy-tailed clutter environments than that in Gaussian clutters. Their robustness against impulsive interference is better than conventional FSS-NLMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Wiener filters for small-target radiometric restoration Hop-by-hop transport for satellite networks Creating virtual sensors using learning based super resolution and data fusion Autonomous robot navigation using advanced motion primitives Development of a relay performance web tool for the Mars network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1