基于MEMD、CSP、熵和Walsh Hadamard变换的运动图像脑电信号分类

D. Sawant, Vaibhavi Padwal, Jugal Joshi, Tanvi Keluskar, Ragini Lalwani, Tanushree Sharma, R. Daruwala
{"title":"基于MEMD、CSP、熵和Walsh Hadamard变换的运动图像脑电信号分类","authors":"D. Sawant, Vaibhavi Padwal, Jugal Joshi, Tanvi Keluskar, Ragini Lalwani, Tanushree Sharma, R. Daruwala","doi":"10.1109/IBSSC47189.2019.8973092","DOIUrl":null,"url":null,"abstract":"This paper provides a novel set of features for classification of motor imagery tasks including the following two classes: right and left hand. While performing motor imagery tasks, desynchronization is seen in the mu and betabands over the sensorimotor cortex region. In order to capture these changes in the different frequency bands, we use MEMD for decomposing the EEG into oscillatory components called IMFs which characterize either a single frequency or a narrow band of frequencies. Features are extracted by applying common spatial pattern (CSP), Entropy and Fast Walsh Hadamard Transform (FWHT) on these IMFs. Using SVM classifier, the above features yield a maximum accuracy of 95%. The proposed feature set results in a better discrimination for motor imagery signals compared to the earlier work in this field.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Motor Imagery EEG Signals using MEMD, CSP, Entropy and Walsh Hadamard Transform\",\"authors\":\"D. Sawant, Vaibhavi Padwal, Jugal Joshi, Tanvi Keluskar, Ragini Lalwani, Tanushree Sharma, R. Daruwala\",\"doi\":\"10.1109/IBSSC47189.2019.8973092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a novel set of features for classification of motor imagery tasks including the following two classes: right and left hand. While performing motor imagery tasks, desynchronization is seen in the mu and betabands over the sensorimotor cortex region. In order to capture these changes in the different frequency bands, we use MEMD for decomposing the EEG into oscillatory components called IMFs which characterize either a single frequency or a narrow band of frequencies. Features are extracted by applying common spatial pattern (CSP), Entropy and Fast Walsh Hadamard Transform (FWHT) on these IMFs. Using SVM classifier, the above features yield a maximum accuracy of 95%. The proposed feature set results in a better discrimination for motor imagery signals compared to the earlier work in this field.\",\"PeriodicalId\":148941,\"journal\":{\"name\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC47189.2019.8973092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8973092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一套新的运动想象任务分类特征,包括右手和左手两类。在执行运动想象任务时,在感觉运动皮层区域的mu和beta带中可以看到不同步。为了捕捉不同频带中的这些变化,我们使用MEMD将EEG分解为称为imf的振荡分量,这些振荡分量具有单频或窄频带的特征。利用公共空间模式(CSP)、熵和快速Walsh Hadamard变换(FWHT)对这些imf进行特征提取。使用SVM分类器,上述特征的准确率最高可达95%。与该领域的早期工作相比,所提出的特征集可以更好地识别运动图像信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Motor Imagery EEG Signals using MEMD, CSP, Entropy and Walsh Hadamard Transform
This paper provides a novel set of features for classification of motor imagery tasks including the following two classes: right and left hand. While performing motor imagery tasks, desynchronization is seen in the mu and betabands over the sensorimotor cortex region. In order to capture these changes in the different frequency bands, we use MEMD for decomposing the EEG into oscillatory components called IMFs which characterize either a single frequency or a narrow band of frequencies. Features are extracted by applying common spatial pattern (CSP), Entropy and Fast Walsh Hadamard Transform (FWHT) on these IMFs. Using SVM classifier, the above features yield a maximum accuracy of 95%. The proposed feature set results in a better discrimination for motor imagery signals compared to the earlier work in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cybersecurity and Network Performance Modeling in Cyber-Physical Communication for BigData and Industrial IoT Technologies An improved lane and vehicle detection method in Driver Assistance System with Lane Departure and Forward Collision Warning Intuitive solution for Robot Maze Problem using Image Processing Spoken Indian Language Classification using GMM supervectors and Artificial Neural Networks An AI driven Genomic Profiling System and Secure Data Sharing using DLT for cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1