Sophia Sakr, Thomas Daunizeau, David Reversat, S. Régnier, S. Haliyo
{"title":"一种用于三维远程微操作的手持主设备","authors":"Sophia Sakr, Thomas Daunizeau, David Reversat, S. Régnier, S. Haliyo","doi":"10.1109/MARSS.2018.8481194","DOIUrl":null,"url":null,"abstract":"Micro-assembly has always been a substantial issue for automation: micro-objects are difficult to grasp due to micro-world physical laws and a lack of adapted sensors. Therefore, many tasks are teleoperated using a nonintuitive device as joystick or button. This paper proposes a fresh remote handling solution to fill that need. A new 1-DOF master device which mimics a tweezers is brought to the fore: it is an instrumented haptic tweezers, handheld, allowing a high intuitiveness for the user. This master device, coupled with a tracking system, controls a micro-positioner and a micro-gripper. Different coupling strategies using position or speed variables are demonstrated.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Handheld Master Device for 3D Remote Micro-Manipulation\",\"authors\":\"Sophia Sakr, Thomas Daunizeau, David Reversat, S. Régnier, S. Haliyo\",\"doi\":\"10.1109/MARSS.2018.8481194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-assembly has always been a substantial issue for automation: micro-objects are difficult to grasp due to micro-world physical laws and a lack of adapted sensors. Therefore, many tasks are teleoperated using a nonintuitive device as joystick or button. This paper proposes a fresh remote handling solution to fill that need. A new 1-DOF master device which mimics a tweezers is brought to the fore: it is an instrumented haptic tweezers, handheld, allowing a high intuitiveness for the user. This master device, coupled with a tracking system, controls a micro-positioner and a micro-gripper. Different coupling strategies using position or speed variables are demonstrated.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Handheld Master Device for 3D Remote Micro-Manipulation
Micro-assembly has always been a substantial issue for automation: micro-objects are difficult to grasp due to micro-world physical laws and a lack of adapted sensors. Therefore, many tasks are teleoperated using a nonintuitive device as joystick or button. This paper proposes a fresh remote handling solution to fill that need. A new 1-DOF master device which mimics a tweezers is brought to the fore: it is an instrumented haptic tweezers, handheld, allowing a high intuitiveness for the user. This master device, coupled with a tracking system, controls a micro-positioner and a micro-gripper. Different coupling strategies using position or speed variables are demonstrated.