J. Andersson, Robin Gustafsson, Rikard Johansson, R. Bensow
{"title":"冰级螺旋桨模型和船级后向性能研究","authors":"J. Andersson, Robin Gustafsson, Rikard Johansson, R. Bensow","doi":"10.2218/marine2021.6805","DOIUrl":null,"url":null,"abstract":". A CFD study in both model and ship-scale is conducted to compare the in-behind performance of an ice classed to a conventional propeller. In ship-scale the performance degradation of the ice classed propeller in-behind is less than in open water. Through evaluation of the blades performance tangentially and radially in the wake it is observed that the ice classed blade is superior at very low load, the blunter profiles is less sensitive to negative angles of attack. Contrary, in model-scale a larger difference in performance is noted between the propellers in-behind than expected from open water performance. This is most probably related to differences in Reynolds number between model-scale open water and self-propulsion tests, the thicker profiles of the ice classed propeller makes it additionally punished by the low Reynolds numbers of the self-propulsion tests.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In-behind Performance of an Ice Classed Propeller in Model and Ship-Scale\",\"authors\":\"J. Andersson, Robin Gustafsson, Rikard Johansson, R. Bensow\",\"doi\":\"10.2218/marine2021.6805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A CFD study in both model and ship-scale is conducted to compare the in-behind performance of an ice classed to a conventional propeller. In ship-scale the performance degradation of the ice classed propeller in-behind is less than in open water. Through evaluation of the blades performance tangentially and radially in the wake it is observed that the ice classed blade is superior at very low load, the blunter profiles is less sensitive to negative angles of attack. Contrary, in model-scale a larger difference in performance is noted between the propellers in-behind than expected from open water performance. This is most probably related to differences in Reynolds number between model-scale open water and self-propulsion tests, the thicker profiles of the ice classed propeller makes it additionally punished by the low Reynolds numbers of the self-propulsion tests.\",\"PeriodicalId\":367395,\"journal\":{\"name\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/marine2021.6805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/marine2021.6805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-behind Performance of an Ice Classed Propeller in Model and Ship-Scale
. A CFD study in both model and ship-scale is conducted to compare the in-behind performance of an ice classed to a conventional propeller. In ship-scale the performance degradation of the ice classed propeller in-behind is less than in open water. Through evaluation of the blades performance tangentially and radially in the wake it is observed that the ice classed blade is superior at very low load, the blunter profiles is less sensitive to negative angles of attack. Contrary, in model-scale a larger difference in performance is noted between the propellers in-behind than expected from open water performance. This is most probably related to differences in Reynolds number between model-scale open water and self-propulsion tests, the thicker profiles of the ice classed propeller makes it additionally punished by the low Reynolds numbers of the self-propulsion tests.