结合电子表格气味改进故障预测

Patrick W. Koch, Konstantin Schekotihin, D. Jannach, Birgit Hofer, F. Wotawa
{"title":"结合电子表格气味改进故障预测","authors":"Patrick W. Koch, Konstantin Schekotihin, D. Jannach, Birgit Hofer, F. Wotawa","doi":"10.1145/3183399.3183402","DOIUrl":null,"url":null,"abstract":"Spreadsheets are commonly used in organizations as a programming tool for business-related calculations and decision making. Since faults in spreadsheets can have severe business impacts, a number of approaches from general software engineering have been applied to spreadsheets in recent years, among them the concept of code smells. Smells can in particular be used for the task of fault prediction. An analysis of existing spreadsheet smells, however, revealed that the predictive power of individual smells can be limited. In this work we therefore propose a machine learning based approach which combines the predictions of individual smells by using an AdaBoost ensemble classifier. Experiments on two public datasets containing real-world spreadsheet faults show significant improvements in terms of fault prediction accuracy.","PeriodicalId":212579,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining Spreadsheet Smells for Improved Fault Prediction\",\"authors\":\"Patrick W. Koch, Konstantin Schekotihin, D. Jannach, Birgit Hofer, F. Wotawa\",\"doi\":\"10.1145/3183399.3183402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spreadsheets are commonly used in organizations as a programming tool for business-related calculations and decision making. Since faults in spreadsheets can have severe business impacts, a number of approaches from general software engineering have been applied to spreadsheets in recent years, among them the concept of code smells. Smells can in particular be used for the task of fault prediction. An analysis of existing spreadsheet smells, however, revealed that the predictive power of individual smells can be limited. In this work we therefore propose a machine learning based approach which combines the predictions of individual smells by using an AdaBoost ensemble classifier. Experiments on two public datasets containing real-world spreadsheet faults show significant improvements in terms of fault prediction accuracy.\",\"PeriodicalId\":212579,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183399.3183402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183399.3183402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电子表格通常在组织中用作与业务相关的计算和决策的编程工具。由于电子表格中的错误可能会产生严重的业务影响,近年来,来自通用软件工程的许多方法已应用于电子表格,其中包括代码气味的概念。气味可以特别用于故障预测任务。然而,对现有电子表格气味的分析显示,个体气味的预测能力是有限的。因此,在这项工作中,我们提出了一种基于机器学习的方法,该方法通过使用AdaBoost集成分类器将个体气味的预测结合起来。在两个包含真实电子表格故障的公共数据集上进行的实验表明,该方法在故障预测精度方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Spreadsheet Smells for Improved Fault Prediction
Spreadsheets are commonly used in organizations as a programming tool for business-related calculations and decision making. Since faults in spreadsheets can have severe business impacts, a number of approaches from general software engineering have been applied to spreadsheets in recent years, among them the concept of code smells. Smells can in particular be used for the task of fault prediction. An analysis of existing spreadsheet smells, however, revealed that the predictive power of individual smells can be limited. In this work we therefore propose a machine learning based approach which combines the predictions of individual smells by using an AdaBoost ensemble classifier. Experiments on two public datasets containing real-world spreadsheet faults show significant improvements in terms of fault prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Specific-Instance Interpolation Proofs with SyGuS Images of Code: Lossy Compression for Native Instructions Enabling Real-Time Feedback in Software Engineering Deep Customization of Multi-tenant SaaS Using Intrusive Microservices Measure Confidence of Assurance Cases in Safety-Critical Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1