基于粒子群算法的非凸障碍物环境下移动机器人路径规划

Muhammad Shahab Alam, M. U. Rafique
{"title":"基于粒子群算法的非凸障碍物环境下移动机器人路径规划","authors":"Muhammad Shahab Alam, M. U. Rafique","doi":"10.1109/ICCAR.2015.7165997","DOIUrl":null,"url":null,"abstract":"Generally workspaces of mobile robots are cluttered with obstacles of different sizes and shapes. Majority of the path planning algorithms get stuck in non-convex obstacles pertaining to local minima. Particle Swarm Optimization (PSO) is by comparison simple and readily intelligible yet a very powerful optimization technique which makes it an apt choice for path finding problems in complex environments. This paper presents a particle swarm optimization based path planning algorithm developed for finding a shortest collision-free path for a mobile robot in an environment strewed with non-convex obstacles. The proposed method uses random sampling and finds the optimal path while avoiding non-convex obstacles without exhaustive search. Detailed simulation results show the functionality and effectiveness of the proposed algorithm in different scenarios.","PeriodicalId":422587,"journal":{"name":"2015 International Conference on Control, Automation and Robotics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization\",\"authors\":\"Muhammad Shahab Alam, M. U. Rafique\",\"doi\":\"10.1109/ICCAR.2015.7165997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally workspaces of mobile robots are cluttered with obstacles of different sizes and shapes. Majority of the path planning algorithms get stuck in non-convex obstacles pertaining to local minima. Particle Swarm Optimization (PSO) is by comparison simple and readily intelligible yet a very powerful optimization technique which makes it an apt choice for path finding problems in complex environments. This paper presents a particle swarm optimization based path planning algorithm developed for finding a shortest collision-free path for a mobile robot in an environment strewed with non-convex obstacles. The proposed method uses random sampling and finds the optimal path while avoiding non-convex obstacles without exhaustive search. Detailed simulation results show the functionality and effectiveness of the proposed algorithm in different scenarios.\",\"PeriodicalId\":422587,\"journal\":{\"name\":\"2015 International Conference on Control, Automation and Robotics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAR.2015.7165997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2015.7165997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

一般来说,移动机器人的工作空间都布满了不同大小和形状的障碍物。大多数路径规划算法都陷入了与局部最小值有关的非凸障碍物中。粒子群优化(PSO)是一种简单易懂、功能强大的优化技术,是解决复杂环境下寻路问题的理想选择。提出了一种基于粒子群优化的路径规划算法,用于移动机器人在非凸障碍物环境中寻找最短的无碰撞路径。该方法采用随机抽样方法,在避免非凸障碍物的同时找到最优路径,无需穷举搜索。详细的仿真结果表明了该算法在不同场景下的功能性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization
Generally workspaces of mobile robots are cluttered with obstacles of different sizes and shapes. Majority of the path planning algorithms get stuck in non-convex obstacles pertaining to local minima. Particle Swarm Optimization (PSO) is by comparison simple and readily intelligible yet a very powerful optimization technique which makes it an apt choice for path finding problems in complex environments. This paper presents a particle swarm optimization based path planning algorithm developed for finding a shortest collision-free path for a mobile robot in an environment strewed with non-convex obstacles. The proposed method uses random sampling and finds the optimal path while avoiding non-convex obstacles without exhaustive search. Detailed simulation results show the functionality and effectiveness of the proposed algorithm in different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile based palmprint recognition system Scenario based approach for control design for DC-DC Buck Converter Touching an Android robot: Would you do it and how? Performance analysis and comparison between two forms of double EWMA controllers in industrial process Fast range-based localization of targets using particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1