高阻接地(HRG)电力系统中螺栓接地单相故障电流的相量和方向

D. Paul
{"title":"高阻接地(HRG)电力系统中螺栓接地单相故障电流的相量和方向","authors":"D. Paul","doi":"10.1109/ICPS.2016.7490258","DOIUrl":null,"url":null,"abstract":"This paper reviews the phasor and directions of a single-phase-ground fault current (s) in a high-resistance grounded (HRG) power system. A brief review of the published literature, which is inconsistent, has caused confusion on what should be the correct phasor and fault current directions to be used in dot standard P3003.1. An application concept that during single-phase-ground fault condition, “distributed capacitive current direction reverses in the two un-faulted phases” compared to the direction under normal system operation. This concept has been applied before [2] [6]; however, some application engineers raised the question on this concept. The concept is currently used in the modern ground fault protection relays used for HRG and ungrounded power systems. It has no impact on the operation of the power system during the phase-ground fault condition, but it helps in providing ground-fault current flow from faulted location to ground, a normal industry convention. The paper will provide guidance on how to update the contents of the HRG system contained in the current edition of IEEE STD. 142 to be used for Dot Standard P3003.1 [23].","PeriodicalId":266558,"journal":{"name":"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phasor and directions of a bolted single-phase-ground fault current in a high-resistance grounded (HRG) power system\",\"authors\":\"D. Paul\",\"doi\":\"10.1109/ICPS.2016.7490258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews the phasor and directions of a single-phase-ground fault current (s) in a high-resistance grounded (HRG) power system. A brief review of the published literature, which is inconsistent, has caused confusion on what should be the correct phasor and fault current directions to be used in dot standard P3003.1. An application concept that during single-phase-ground fault condition, “distributed capacitive current direction reverses in the two un-faulted phases” compared to the direction under normal system operation. This concept has been applied before [2] [6]; however, some application engineers raised the question on this concept. The concept is currently used in the modern ground fault protection relays used for HRG and ungrounded power systems. It has no impact on the operation of the power system during the phase-ground fault condition, but it helps in providing ground-fault current flow from faulted location to ground, a normal industry convention. The paper will provide guidance on how to update the contents of the HRG system contained in the current edition of IEEE STD. 142 to be used for Dot Standard P3003.1 [23].\",\"PeriodicalId\":266558,\"journal\":{\"name\":\"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS.2016.7490258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS.2016.7490258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文综述了高阻接地电力系统单相接地故障电流的相量和方向。简要回顾已发表的文献,这些文献是不一致的,已经造成了在dot标准P3003.1中应该使用的正确相量和故障电流方向的混淆。一种应用概念,即在单相接地故障情况下,与系统正常运行时的方向相比,“未故障两相的分布电容电流方向相反”。这个概念在b[2][6]之前就已经应用了;然而,一些应用工程师对这个概念提出了质疑。这一概念目前已应用于HRG和非接地电力系统的现代接地故障保护继电器中。在相接地故障情况下,它对电力系统的运行没有影响,但它有助于提供从故障位置到地的接地故障电流,这是正常的行业惯例。本文将提供关于如何更新当前版本IEEE STD. 142中包含的HRG系统内容以用于Dot标准P3003.1[23]的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phasor and directions of a bolted single-phase-ground fault current in a high-resistance grounded (HRG) power system
This paper reviews the phasor and directions of a single-phase-ground fault current (s) in a high-resistance grounded (HRG) power system. A brief review of the published literature, which is inconsistent, has caused confusion on what should be the correct phasor and fault current directions to be used in dot standard P3003.1. An application concept that during single-phase-ground fault condition, “distributed capacitive current direction reverses in the two un-faulted phases” compared to the direction under normal system operation. This concept has been applied before [2] [6]; however, some application engineers raised the question on this concept. The concept is currently used in the modern ground fault protection relays used for HRG and ungrounded power systems. It has no impact on the operation of the power system during the phase-ground fault condition, but it helps in providing ground-fault current flow from faulted location to ground, a normal industry convention. The paper will provide guidance on how to update the contents of the HRG system contained in the current edition of IEEE STD. 142 to be used for Dot Standard P3003.1 [23].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating arc-flash PPE categories in Protection Device Coordination based on IEEE Std. 1584 and NFPA 70E Innovative design and feasibility study for a subsea electrical submersible pump system Overview on energy saving opportunities in electric motor driven systems - Part 2: Regeneration and output power reduction Functions and duties of the forensic electrical engineer Customized electrical systems: The special case of the Colosseum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1