家庭能源消费预测:一种深度神经进化方法

Alexander Soudaei, Jianhua Zhang, Mohamed Elmi, Mikael Tsechoev, Zishan Khan, Ahmed Osman
{"title":"家庭能源消费预测:一种深度神经进化方法","authors":"Alexander Soudaei, Jianhua Zhang, Mohamed Elmi, Mikael Tsechoev, Zishan Khan, Ahmed Osman","doi":"10.1145/3611450.3611474","DOIUrl":null,"url":null,"abstract":"Accurate energy consumption prediction can provide insights to make better informed decisions on energy purchase and generation. It also can prevent overloading and make it possible to store energy more efficiently. In this work, we propose a new deep learning model to predict the household energy consumption. In the new model, we employ differential evolution (DE) algorithm to automatically determine the optimal architecture of the deep neural network. The energy prediction results are presented and analyzed to show the effectiveness of the deep neuroevolution model constructed.","PeriodicalId":289906,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Household Energy Consumption Prediction: A Deep Neuroevolution Approach\",\"authors\":\"Alexander Soudaei, Jianhua Zhang, Mohamed Elmi, Mikael Tsechoev, Zishan Khan, Ahmed Osman\",\"doi\":\"10.1145/3611450.3611474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate energy consumption prediction can provide insights to make better informed decisions on energy purchase and generation. It also can prevent overloading and make it possible to store energy more efficiently. In this work, we propose a new deep learning model to predict the household energy consumption. In the new model, we employ differential evolution (DE) algorithm to automatically determine the optimal architecture of the deep neural network. The energy prediction results are presented and analyzed to show the effectiveness of the deep neuroevolution model constructed.\",\"PeriodicalId\":289906,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611450.3611474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611450.3611474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的能源消耗预测可以为在能源购买和发电方面做出更明智的决策提供见解。它还可以防止超载,使更有效地储存能量成为可能。在这项工作中,我们提出了一个新的深度学习模型来预测家庭能源消耗。在新模型中,我们采用差分进化(DE)算法自动确定深度神经网络的最优结构。最后给出了能量预测结果并对其进行了分析,验证了所构建的深度神经进化模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Household Energy Consumption Prediction: A Deep Neuroevolution Approach
Accurate energy consumption prediction can provide insights to make better informed decisions on energy purchase and generation. It also can prevent overloading and make it possible to store energy more efficiently. In this work, we propose a new deep learning model to predict the household energy consumption. In the new model, we employ differential evolution (DE) algorithm to automatically determine the optimal architecture of the deep neural network. The energy prediction results are presented and analyzed to show the effectiveness of the deep neuroevolution model constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy-based Time-series Financial Distress Model Based on Attribute Selection and MetaCost Methods for Imbalance Class Joint Energy-Limited UAV Trajectory and Node Wake-Up Scheduling Optimization for Data Collection in Maritime Wireless Sensor Networks RHC Method Based 2D-equal-step Path Generation for UAV Swarm Online Cooperative Path Planning in Dynamic Mission Environment A Novel Control Scheme of Stable Electricity and High Efficiency Supply in SOFC-based DC Micro-grid Study on the fault diagnosis method of ship main engine unbalanced data based on improved DQN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1