基于图像处理的小麦病害检测

Varsha P. Gaikwad, V. Musande
{"title":"基于图像处理的小麦病害检测","authors":"Varsha P. Gaikwad, V. Musande","doi":"10.1109/ICISIM.2017.8122158","DOIUrl":null,"url":null,"abstract":"The most important factor in reduction of quality and quantity of crop is due to plant disease. Identifying plant disease is a key to prevent agricultural losses. The aim of this paper is to develop a software solution which automatically detect and classify plant disease. It includes four steps, first step image acquisition, second step is image preprocessing, third step is image segmentation and fourth step is feature extraction which consider color, shape and size. For classification we used here Neural Network based classifier.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Wheat disease detection using image processing\",\"authors\":\"Varsha P. Gaikwad, V. Musande\",\"doi\":\"10.1109/ICISIM.2017.8122158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important factor in reduction of quality and quantity of crop is due to plant disease. Identifying plant disease is a key to prevent agricultural losses. The aim of this paper is to develop a software solution which automatically detect and classify plant disease. It includes four steps, first step image acquisition, second step is image preprocessing, third step is image segmentation and fourth step is feature extraction which consider color, shape and size. For classification we used here Neural Network based classifier.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

造成作物质量和数量下降的最重要因素是植物病害。识别植物病害是防止农业损失的关键。本文的目的是开发一个自动检测和分类植物病害的软件解决方案。它包括四个步骤,第一步是图像采集,第二步是图像预处理,第三步是图像分割,第四步是考虑颜色、形状和大小的特征提取。对于分类,我们使用基于神经网络的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wheat disease detection using image processing
The most important factor in reduction of quality and quantity of crop is due to plant disease. Identifying plant disease is a key to prevent agricultural losses. The aim of this paper is to develop a software solution which automatically detect and classify plant disease. It includes four steps, first step image acquisition, second step is image preprocessing, third step is image segmentation and fourth step is feature extraction which consider color, shape and size. For classification we used here Neural Network based classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1