M. L. D. Santos, V. Santos, C. Mauricio, F. F. F. Peres
{"title":"利用CNN YOLOv3对配电线路中的物体进行检测和分类","authors":"M. L. D. Santos, V. Santos, C. Mauricio, F. F. F. Peres","doi":"10.5753/latinoware.2020.18617","DOIUrl":null,"url":null,"abstract":"A energia elétrica é algo essencial para todas as áreas de produção. Sendo assim, a condição dos equipamentos é essencial para a distribuição de uma energia de qualidade. Contudo, as redes elétricas se estendem por quilômetros e ainda por trechos de difícil acesso, comprometendo encontrar equipamentos danificados. Neste artigo, apresenta-se uma solução de detecção e classificação de objetos das linhas de distribuição de energia utilizando Redes Neurais Convolucionais. Na primeira etapa do projeto, a CNN foi treinada para detectar e classificar quatro tipos de objetos que fazem parte da rede elétrica. A rede neural artificial selecionada para detectar e classificar os objetos foi a YOLOv3. Para compor o banco de imagens de teste e treinamento, foi utilizado um drone e efetuadas coletas de imagens em 10 locais distintos. Após o treinamento, a CNN alcançou um IoU de 60,38%.","PeriodicalId":119415,"journal":{"name":"Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias Abertas (Latinoware 2020)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecção e classificação de objetos em linhas de distribuição de energia utilizando a CNN YOLOv3\",\"authors\":\"M. L. D. Santos, V. Santos, C. Mauricio, F. F. F. Peres\",\"doi\":\"10.5753/latinoware.2020.18617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A energia elétrica é algo essencial para todas as áreas de produção. Sendo assim, a condição dos equipamentos é essencial para a distribuição de uma energia de qualidade. Contudo, as redes elétricas se estendem por quilômetros e ainda por trechos de difícil acesso, comprometendo encontrar equipamentos danificados. Neste artigo, apresenta-se uma solução de detecção e classificação de objetos das linhas de distribuição de energia utilizando Redes Neurais Convolucionais. Na primeira etapa do projeto, a CNN foi treinada para detectar e classificar quatro tipos de objetos que fazem parte da rede elétrica. A rede neural artificial selecionada para detectar e classificar os objetos foi a YOLOv3. Para compor o banco de imagens de teste e treinamento, foi utilizado um drone e efetuadas coletas de imagens em 10 locais distintos. Após o treinamento, a CNN alcançou um IoU de 60,38%.\",\"PeriodicalId\":119415,\"journal\":{\"name\":\"Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias Abertas (Latinoware 2020)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias Abertas (Latinoware 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/latinoware.2020.18617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias Abertas (Latinoware 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/latinoware.2020.18617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecção e classificação de objetos em linhas de distribuição de energia utilizando a CNN YOLOv3
A energia elétrica é algo essencial para todas as áreas de produção. Sendo assim, a condição dos equipamentos é essencial para a distribuição de uma energia de qualidade. Contudo, as redes elétricas se estendem por quilômetros e ainda por trechos de difícil acesso, comprometendo encontrar equipamentos danificados. Neste artigo, apresenta-se uma solução de detecção e classificação de objetos das linhas de distribuição de energia utilizando Redes Neurais Convolucionais. Na primeira etapa do projeto, a CNN foi treinada para detectar e classificar quatro tipos de objetos que fazem parte da rede elétrica. A rede neural artificial selecionada para detectar e classificar os objetos foi a YOLOv3. Para compor o banco de imagens de teste e treinamento, foi utilizado um drone e efetuadas coletas de imagens em 10 locais distintos. Após o treinamento, a CNN alcançou um IoU de 60,38%.