Ausi Abubakar Ssentongo, Nsubuga Francis Waswa, D. Darkey
{"title":"基于概率分布的退化Lwamunda森林流域水文气候学特征","authors":"Ausi Abubakar Ssentongo, Nsubuga Francis Waswa, D. Darkey","doi":"10.11648/J.EARTH.20200902.13","DOIUrl":null,"url":null,"abstract":"Hydroclimatology assessment is conventionally based on area data for identification of change patterns and trends. In this paper, monthly averages, maximum seasonal and maximum annual hydro- climatology data series from Lwamunda forest catchment area in central Uganda have been analyzed in order to determine the appropriate probability distribution models for the underlying climatology (i.e. rainfall, soil moisture content, evapotranspiration and temperature). A total of 7 probability distributions were considered and three goodnessof- fit tests were used to evaluate the best-fit probability distribution model for each hydro-climatology data series. They were Lilliefors (D), Anderson-Darling (AD), and Cramer-Von Mises (W2). A ranking metric based on the test statistic from the three GoF tests was used to select the most appropriate probability distribution model capable of reproducing the statistics of the hydroclimatological data series. The best fit probability distribution was selected based on the minimum sum of the three test statistic. Results showed that different best fit probability distribution models were identified for the different data series depending on location and on temporal scales which corroborate with those reported in literature. With the exception of soil moisture content for annual and seasonal maximum series who have the same best fit model. The same applied to evapotranspiration seasonal maximum and near surface temperature seasonal maximum as well as monthly near surface temperatures have the same best fit model. The soil moisture content data series was best fit by the Weibull probability distribution, rainfall series was best fit by Chi square and Gamma probability distributions. The evapotranspiration data series was best fit by Logistic and Extreme value maximum (Gumbel) probability distributions. Finally for near surface temperature it was best fitted by Logistic and Gumbel probability distributions. The contribution of this study lies in the use of hydroclimatological data series including soil moisture content from the area that had forest cover change to analyzeits impact on water resources patterns. The contribution is important for agricultural planning and forest managers’ simulation of forest degradation impacts.","PeriodicalId":350455,"journal":{"name":"Eearth","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydro-climatology Characterization of Degraded Lwamunda Forest Catchment Based on Probability Distributions\",\"authors\":\"Ausi Abubakar Ssentongo, Nsubuga Francis Waswa, D. Darkey\",\"doi\":\"10.11648/J.EARTH.20200902.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroclimatology assessment is conventionally based on area data for identification of change patterns and trends. In this paper, monthly averages, maximum seasonal and maximum annual hydro- climatology data series from Lwamunda forest catchment area in central Uganda have been analyzed in order to determine the appropriate probability distribution models for the underlying climatology (i.e. rainfall, soil moisture content, evapotranspiration and temperature). A total of 7 probability distributions were considered and three goodnessof- fit tests were used to evaluate the best-fit probability distribution model for each hydro-climatology data series. They were Lilliefors (D), Anderson-Darling (AD), and Cramer-Von Mises (W2). A ranking metric based on the test statistic from the three GoF tests was used to select the most appropriate probability distribution model capable of reproducing the statistics of the hydroclimatological data series. The best fit probability distribution was selected based on the minimum sum of the three test statistic. Results showed that different best fit probability distribution models were identified for the different data series depending on location and on temporal scales which corroborate with those reported in literature. With the exception of soil moisture content for annual and seasonal maximum series who have the same best fit model. The same applied to evapotranspiration seasonal maximum and near surface temperature seasonal maximum as well as monthly near surface temperatures have the same best fit model. The soil moisture content data series was best fit by the Weibull probability distribution, rainfall series was best fit by Chi square and Gamma probability distributions. The evapotranspiration data series was best fit by Logistic and Extreme value maximum (Gumbel) probability distributions. Finally for near surface temperature it was best fitted by Logistic and Gumbel probability distributions. The contribution of this study lies in the use of hydroclimatological data series including soil moisture content from the area that had forest cover change to analyzeits impact on water resources patterns. The contribution is important for agricultural planning and forest managers’ simulation of forest degradation impacts.\",\"PeriodicalId\":350455,\"journal\":{\"name\":\"Eearth\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eearth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.EARTH.20200902.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eearth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.EARTH.20200902.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydro-climatology Characterization of Degraded Lwamunda Forest Catchment Based on Probability Distributions
Hydroclimatology assessment is conventionally based on area data for identification of change patterns and trends. In this paper, monthly averages, maximum seasonal and maximum annual hydro- climatology data series from Lwamunda forest catchment area in central Uganda have been analyzed in order to determine the appropriate probability distribution models for the underlying climatology (i.e. rainfall, soil moisture content, evapotranspiration and temperature). A total of 7 probability distributions were considered and three goodnessof- fit tests were used to evaluate the best-fit probability distribution model for each hydro-climatology data series. They were Lilliefors (D), Anderson-Darling (AD), and Cramer-Von Mises (W2). A ranking metric based on the test statistic from the three GoF tests was used to select the most appropriate probability distribution model capable of reproducing the statistics of the hydroclimatological data series. The best fit probability distribution was selected based on the minimum sum of the three test statistic. Results showed that different best fit probability distribution models were identified for the different data series depending on location and on temporal scales which corroborate with those reported in literature. With the exception of soil moisture content for annual and seasonal maximum series who have the same best fit model. The same applied to evapotranspiration seasonal maximum and near surface temperature seasonal maximum as well as monthly near surface temperatures have the same best fit model. The soil moisture content data series was best fit by the Weibull probability distribution, rainfall series was best fit by Chi square and Gamma probability distributions. The evapotranspiration data series was best fit by Logistic and Extreme value maximum (Gumbel) probability distributions. Finally for near surface temperature it was best fitted by Logistic and Gumbel probability distributions. The contribution of this study lies in the use of hydroclimatological data series including soil moisture content from the area that had forest cover change to analyzeits impact on water resources patterns. The contribution is important for agricultural planning and forest managers’ simulation of forest degradation impacts.