{"title":"利用机器学习混合方法从大数据中挖掘项目失败指标","authors":"K. Strang, N. Vajjhala","doi":"10.4018/ijitpm.317221","DOIUrl":null,"url":null,"abstract":"The literature revealed approximately 50% of IT-related projects around the world fail, which must frustrate a sponsor or decision maker since their ability to forecast success is statistically about the same as guessing with a random coin toss. Nonetheless, some project success/failure factors have been identified, but often the effect sizes were statistically negligible. A pragmatic mixed methods recursive approach was applied, using structured programming, machine learning (ML), and statistical software to mine a large data source for probable project success/failure indicators. Seven feature indicators were detected from ML, producing an accuracy of 79.9%, a recall rate of 81%, an F1 score of 0.798, and a ROCa of 0.849. A post-hoc regression model confirmed three indicators were significant with a 27% effect size. The contributions made to the body of knowledge included: A conceptual model comparing ML methods by artificial intelligence capability and research decision making goal, a mixed methods recursive pragmatic research design, application of the random forest ML technique with post hoc statistical methods, and a preliminary list of IT project failure indicators analyzed from big data.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Project Failure Indicators From Big Data Using Machine Learning Mixed Methods\",\"authors\":\"K. Strang, N. Vajjhala\",\"doi\":\"10.4018/ijitpm.317221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The literature revealed approximately 50% of IT-related projects around the world fail, which must frustrate a sponsor or decision maker since their ability to forecast success is statistically about the same as guessing with a random coin toss. Nonetheless, some project success/failure factors have been identified, but often the effect sizes were statistically negligible. A pragmatic mixed methods recursive approach was applied, using structured programming, machine learning (ML), and statistical software to mine a large data source for probable project success/failure indicators. Seven feature indicators were detected from ML, producing an accuracy of 79.9%, a recall rate of 81%, an F1 score of 0.798, and a ROCa of 0.849. A post-hoc regression model confirmed three indicators were significant with a 27% effect size. The contributions made to the body of knowledge included: A conceptual model comparing ML methods by artificial intelligence capability and research decision making goal, a mixed methods recursive pragmatic research design, application of the random forest ML technique with post hoc statistical methods, and a preliminary list of IT project failure indicators analyzed from big data.\",\"PeriodicalId\":375999,\"journal\":{\"name\":\"Int. J. Inf. Technol. Proj. Manag.\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Proj. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitpm.317221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitpm.317221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining Project Failure Indicators From Big Data Using Machine Learning Mixed Methods
The literature revealed approximately 50% of IT-related projects around the world fail, which must frustrate a sponsor or decision maker since their ability to forecast success is statistically about the same as guessing with a random coin toss. Nonetheless, some project success/failure factors have been identified, but often the effect sizes were statistically negligible. A pragmatic mixed methods recursive approach was applied, using structured programming, machine learning (ML), and statistical software to mine a large data source for probable project success/failure indicators. Seven feature indicators were detected from ML, producing an accuracy of 79.9%, a recall rate of 81%, an F1 score of 0.798, and a ROCa of 0.849. A post-hoc regression model confirmed three indicators were significant with a 27% effect size. The contributions made to the body of knowledge included: A conceptual model comparing ML methods by artificial intelligence capability and research decision making goal, a mixed methods recursive pragmatic research design, application of the random forest ML technique with post hoc statistical methods, and a preliminary list of IT project failure indicators analyzed from big data.