第一个真正的可重构计算机操作系统

G. Wigley, D. Kearney
{"title":"第一个真正的可重构计算机操作系统","authors":"G. Wigley, D. Kearney","doi":"10.1109/ACAC.2001.903375","DOIUrl":null,"url":null,"abstract":"Traditional reconfigurable computing platforms are designed to be single user and have been acknowledged to be difficult to design applications for. The design tools are still primitive and as reconfigurable computing becomes mainstream the development of new design tools and run time environments is essential. As the number of system gates is reaching 10 million on current FPGAs, there is an increase in demand to share a single FPGA amongst multiple applications. A third party must be introduced to handle the sharing of the FPGA and we therefore introduce the first real single FPGA concurrent multi-user operating system for reconfigurable computers. In this paper we describe the complete operating system for reconfigurable architecture and the implementation details for the first limited multi-user operating system. The first OS is a loader, it allocates FPGA area and it can dynamically partition, place and route applications at run-time. As OS for reconfigurable computing is a new area of research, we also had to develop techniques for regression testing and performance comparison. This involved the development of a test suite.","PeriodicalId":230403,"journal":{"name":"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"The first real operating system for reconfigurable computers\",\"authors\":\"G. Wigley, D. Kearney\",\"doi\":\"10.1109/ACAC.2001.903375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional reconfigurable computing platforms are designed to be single user and have been acknowledged to be difficult to design applications for. The design tools are still primitive and as reconfigurable computing becomes mainstream the development of new design tools and run time environments is essential. As the number of system gates is reaching 10 million on current FPGAs, there is an increase in demand to share a single FPGA amongst multiple applications. A third party must be introduced to handle the sharing of the FPGA and we therefore introduce the first real single FPGA concurrent multi-user operating system for reconfigurable computers. In this paper we describe the complete operating system for reconfigurable architecture and the implementation details for the first limited multi-user operating system. The first OS is a loader, it allocates FPGA area and it can dynamically partition, place and route applications at run-time. As OS for reconfigurable computing is a new area of research, we also had to develop techniques for regression testing and performance comparison. This involved the development of a test suite.\",\"PeriodicalId\":230403,\"journal\":{\"name\":\"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAC.2001.903375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAC.2001.903375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

传统的可重构计算平台被设计为单用户,并且被认为很难设计应用程序。设计工具仍然是原始的,随着可重构计算成为主流,开发新的设计工具和运行时环境是必不可少的。随着当前FPGA上系统门的数量达到1000万个,在多个应用中共享单个FPGA的需求增加。必须引入第三方来处理FPGA的共享,因此我们为可重构计算机引入了第一个真正的单FPGA并发多用户操作系统。本文描述了可重构体系结构的完整操作系统和第一个有限多用户操作系统的实现细节。第一个操作系统是一个加载器,它分配FPGA区域,并可以在运行时动态分区、放置和路由应用程序。由于用于可重构计算的操作系统是一个新的研究领域,我们还必须开发用于回归测试和性能比较的技术。这涉及到测试套件的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The first real operating system for reconfigurable computers
Traditional reconfigurable computing platforms are designed to be single user and have been acknowledged to be difficult to design applications for. The design tools are still primitive and as reconfigurable computing becomes mainstream the development of new design tools and run time environments is essential. As the number of system gates is reaching 10 million on current FPGAs, there is an increase in demand to share a single FPGA amongst multiple applications. A third party must be introduced to handle the sharing of the FPGA and we therefore introduce the first real single FPGA concurrent multi-user operating system for reconfigurable computers. In this paper we describe the complete operating system for reconfigurable architecture and the implementation details for the first limited multi-user operating system. The first OS is a loader, it allocates FPGA area and it can dynamically partition, place and route applications at run-time. As OS for reconfigurable computing is a new area of research, we also had to develop techniques for regression testing and performance comparison. This involved the development of a test suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The SawMill framework for virtual memory diversity Stacking them up: a comparison of virtual machines Adaptive interfacing with reconfigurable computers DStride: data-cache miss-address-based stride prefetching scheme for multimedia processors Performance evaluation of a partial retraining scheme for defective multi-layer neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1