基于元胞自动机模型的单幅图像雾霾去除改进

Surasak Tangsakul, S. Wongthanavasu
{"title":"基于元胞自动机模型的单幅图像雾霾去除改进","authors":"Surasak Tangsakul, S. Wongthanavasu","doi":"10.1109/JCSSE.2018.8457394","DOIUrl":null,"url":null,"abstract":"Hazy images are the images acquired under bad weather with low contrast and faint color properties. Several algorithms used dichromatic model to remove the haze in the image. This paper proposed a novel technique using cellular automata for the single image haze removal. It aims to improve the dark channel and the transmission map. We proposed the cellular automata rule to refine the intensity of image pixel in a dark channel. Then, the light source is estimated from the dark channel. Finally, we proposed the cellular automata rule to construct the transmission map and restored the haze-free image. The experimental results show that the proposed method improved intensity, color saturation quality, and avoid halo artifact without any post-processing when compared with the state-of-the-art methods.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Single Image Haze Removal Based On Cellular Automata Model\",\"authors\":\"Surasak Tangsakul, S. Wongthanavasu\",\"doi\":\"10.1109/JCSSE.2018.8457394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hazy images are the images acquired under bad weather with low contrast and faint color properties. Several algorithms used dichromatic model to remove the haze in the image. This paper proposed a novel technique using cellular automata for the single image haze removal. It aims to improve the dark channel and the transmission map. We proposed the cellular automata rule to refine the intensity of image pixel in a dark channel. Then, the light source is estimated from the dark channel. Finally, we proposed the cellular automata rule to construct the transmission map and restored the haze-free image. The experimental results show that the proposed method improved intensity, color saturation quality, and avoid halo artifact without any post-processing when compared with the state-of-the-art methods.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

朦胧图像是在恶劣天气条件下获得的图像,对比度低,色彩暗淡。有几种算法使用二色模型来去除图像中的雾霾。提出了一种基于元胞自动机的单幅图像去雾技术。它旨在改善暗信道和传输图。我们提出了元胞自动机规则来细化暗通道中图像像素的强度。然后,从暗通道估计光源。最后,我们提出了元胞自动机规则来构建传输图并恢复无雾图像。实验结果表明,与现有方法相比,该方法在不进行任何后处理的情况下,提高了图像的亮度和色彩饱和度,避免了光晕伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Single Image Haze Removal Based On Cellular Automata Model
Hazy images are the images acquired under bad weather with low contrast and faint color properties. Several algorithms used dichromatic model to remove the haze in the image. This paper proposed a novel technique using cellular automata for the single image haze removal. It aims to improve the dark channel and the transmission map. We proposed the cellular automata rule to refine the intensity of image pixel in a dark channel. Then, the light source is estimated from the dark channel. Finally, we proposed the cellular automata rule to construct the transmission map and restored the haze-free image. The experimental results show that the proposed method improved intensity, color saturation quality, and avoid halo artifact without any post-processing when compared with the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1